

Reports of the working groups: Magnets

Luca Bottura and Lionel Quettier Muon Collider Collaboration Meeting CERN, 11-14 October 2022

MAGNET WG: who are we ?

- Institutional participants to EU MuCol:
 - CERN, INFN, CEA, LNCMI, PSI, SOTON, UNIBO, UNIGE and TWENTE
- Additional participation from:
 - NHMFL, US-MDP, KEK, IHEP, F4E, MIT, ATI, TUT
- A very intense session. A total of 23 talks on recent advances and plans, with discussion and debate. VERY enticing and motivating !
- More than 30 on-site participants in the spectacular setting of the TE-MSC Large Magnet Facility (grateful thanks for hosting !), and about 20 participants on-line over 17 time zones

Muon Collider Annual Meeting

Muon Comder Annual Med

14/10/2022

Highlights – Fast accelerators

f y yV			Active power [kW/m]	Reactive power [MVar/m]	Gap energy [J/m]	Energy in air (no gap) [J/m]	Energy in coils [J/m]	Losses in iron [kW/m]]	
Copper Cicrc1:1] Copper,Copper Cicrc1:1] Circ2:1]Circ3:1]	orm-22 Steel	Windowframe magnet	1236	14.0	3697	668	1485	18	Cc re	
M. Breschi,		H magnet - 3 coils	356	16.3	3814	1305	552	26	er	
P. Ribani, R. Micelli,		H magnet - 2 coils	182	19.9	3875	3140	142	111	POF 12n	
UniBo		Hourglass magnet	149	15.7	3821	1165	7	122	Muo 12m	

F. Boattini, CERN

UON Collider

Components testing may help reducing the large safety factor (about 10 !!!) for the stored energy in a capacitor in case of bi-polar voltage swings

POPS capacitor container 12mx2.5mx2.5m; 26ton; 3.3MJ; 0.5MCHF;

Muon Accelerator capacitor container. 12mx2.5mx2.5m; 26tons; 0.22MJ; 0.5MCHF

Design of resistive accelerator magnets has started, revealing interesting features:

- US-MAP design is highly optimized !
- There may be configurations with lower reactive power (easier for energy storage and ramp management) and acceptable active power loss
- The design and analysis tools (this is just the start !) will tell us more

14/10/2022

Highlights – Collider

P. Ferracin (LBNL), E. Rochepault (CEA), from E. Todesco and L. Rossi 14/10/2022

Muon Collider Annual Meeting

Highlights – Technologies

P. Borges de Sousa, R. van Weelderen (CERN)

14/10/2022

Muon Collider Annual Meeting

Understanding radiation effects, developing radiation hardness and mitigation is a crucia (and work-intense) topic for the muon collider

We will actively pursue collaboration (e.g. ATI, KEK, MIT)

Some preliminary conclusions Magnets vs. Physics

- We have some crucial questions to be resolved rapidly, so that magnet work can be focused towards producing a credible and affordable accelerator complex design (contain cost, energy efficient, sustainable operation)
 - Aperture, energy deposition and dose in the proton target area
 - Absorber dimension in the cooling cells
 - Need and level of UHF in the final cooling cells
 - Aperture needs in the rapid cycling synchrotrons
 - Dipole, quadrupole and aperture in the collider arc and IR's
- Initiate discussions to reach convergence on challenging but reasonable values, on the time scale of 2...4 weeks

MInternational MUON Collider Collaboration

Some preliminary conclusions Magnet Technology – 1/3

- Conductor is THE key topic:
 - Nb₃Sn has a known potential (intermediate field solenoids, accelerator magnets for the collider, outsert of hybrid magnets) and will be developed within the scope of HFM, as well as other programs (e.g. US-MDP)
 - BUT...
 - A strong R&D effort on HTS is needed for several magnets that cannot be built otherwise (cooling solenoid, target solenoid, possibly some of the fast ramped magnets)
 - We need to understand J_C, but (and especially) mechanical properties (e.g. stresses, fatigue, ...), whether and how to make cables, and how to make cost-efficient magnets out of existing and future HTS conductors and cables

Muon Collider Annual Meeting

Some preliminary conclusions Magnet Technology – 2/3

The field of HTS Magnet design is wide:

- Conductor design (tapes, flat cables, CORC, CICC, ...)
- High potential of controlled insulation (MI-PI-RI and similar)
- Innovative mechanical designs are needed for the exceptional force levels
- Quench and protection is a specialty by itself
- Select optimized operating temperature and cooling methods
- · New manufacturing techniques need to be devised

• We need to establish and exploit synergies with other programs/labs

- EU-HFM
- KIT (e.g. KIT-CERN KC4)
- US-MDP
- Other worldwide programs such as Japanese and Chinese HFM R&D
- High-field magnet labs (EMFL, NHMFL)

Some preliminary conclusions Magnet Technology – 3/3

- Why HTS ? Considerations of energy efficiency and sustainability seem to favor this direction
- The demands on HTS conductor and solenoids are not far from what can be done already
- We need to involve cognizable industrial partners from the start
 - Make them aware of our needs
 - Develop our knowledge and a good understanding of their limitations and perspective (this is a relatively novel industry, compared to LTS)
 - Profit from the developments that take place in other fields

Thank you !

- This was an excellent technical and personal exchange. Our thanks to the organizers for having provided a perfect setting
- We wish to have more similar occasions, more often than the annual meeting. Define a dedicated setting for plenary magnet technology meetings ? Ideas:
 - I-FAST HTS workshop
 - Other occasion to be organized (e.g. in 6 months ?)

THANKS

12/10/2022

Muon Collider Annual Meeting

Planning

																								Mint
	Year 1					Year 2				Year 3			Year 4									M Mileston		
asks Description	1 2 3	4 5 6	7 8 9	10 11	12 13 1	4 15 1	6 17 1	3 19 20	21 22	3 24 25	5 26 27	28 29	30 31 32	33 34	35	36 37 3	38 39	40 41	42 4	3 44	45 46	47 48	3	Deliverat
VP1: Coordination and Communication	MM	D M			D	м	N	1		D	м		м			D	м					D)	
.1 Study Coordination																								
2 Technical Coordination																								
.,3 Quality Management																								
.,4 Communication and Dissemination																								
.,5 Implementation Scenarios																								
NP2: Physics and Detector Requirements		м			м		N	1		N	1		D			D						м	1	
2.1 Design of detector configurations at Vs=3 TeV and																								
2.2 Design and implementation of event reconstruction																								
2.3 Evaluate detector performance at different																								
VP3: Proton Complex																					D			
3,1 High Power Lincas																								
3,1 Compressor rings design																								
VP4: Muon Production and Cooling										D				D							D			
I,1 Cooling System development																								
I,2 Target system development																								
I,3 Code development																								
NP5: High Energy Complex						м	N	1 M		N	1 M									D	D			
5,1 Collider Design																								
5,2 Pulsed synchrotron and FFA design																								
5,3 Beam dynamics																								
5,4 MDI design and background to the experiment																								
NP6: RadioFrequency Systems																			D		D			
5,1 Baseline Concept of the RF system for the																								
5,2 Baseline concept of the RF system for the Muon																								
5,3 Breakdown mitigation studies for cavities of the																								
5,4 Baseline concept of the high efficiency and high-																								
VP7: Magnet Systems													м	D					м		D			
7,1 Technical Coordination and Integration																								
7,2 Target, Capture and Cooling Magnets																								
7,3 Fast Cycled Accelerators																								
7,4 Collider Ring Magnets																								
VP8: Cooling Cell Integration						D								м					D					
8.1 Absorbers and windows																								
3.2 Solenoids																								
8.3 RadioFrequency																								
3.4 Cooling cell performance																								
3.5 Integration																							1	

12/10/2022

Muon Collider Annual Meeting

at in the