Demonstrator Summary

Chris Rogers*, ISIS Neutron and Muon Source,
On behalf of the **international Muon Collider**Collaboration

*chris.rogers@stfc.ac.uk

Cooling for a Muon Collider (MAP)

What needs to be done?

- Demonstrator
 - Larger emittance change
 - Longitudinal and transverse cooling
 - Multiple absorbers & chaining cooling cells
 - Reacceleration including RF
 - RF breakdown in magnetic fields
 - Commissioning and operation with bunched beam
 - Instrumentation requirements
- Intensity effects out of scope
 - Consider proton demonstrator

- Cooling system test Demonstrator
 - Produce pions on a target

phase rotation

- Collimate +capture longitudinally
- Characterise the incoming muons
- Cool the muons
- Characterise the outgoing muons

Status

- Preliminary physics design exists
- No design exists

Two main ideas / locations

First ideas proposed by Marco C. in the 1st Community meeting. **TT10 line option** seen as most attractive (Roberto L. presentation).

Layout ideas

Target + Horn (and/or superconducting solenoid) - CNGS

- Vertical handling with longitudinal rail system
- Target sits on a alignment table controlled laterally from the outside of the shielding.
- Shielding with fins for cooling

M.Calviani, Design, maintenance and operational aspects of the CNGS target, 4th HPTW,

nuSTORM

- New site compatible with nuSTORM
 - Measurement of neutrino scattering cross sections
 - Beyond Standard Model physics programme
 - Muon beam test area for Demonstrator
- Demonstration of highest-current high-energy muon beam facility
 - Pion beam handling
 - Target concepts can be tested
 - FFA storage ring → rapid acceleration concepts

Alves, & Total (CERN: flux estimation)

- Oscillation-relevant energy regime
 - -Hyper-K: 0.6 GeV
 - **-DUNE.** : 2.4 GeV
- Set by stored-muon momentum
- Accelerator "tune" gives fine control
 - E.g. optimise flux shape (or spread) by adjusting the ring acceptance

Unique opportunity:

- E_{v} -scan measurements
- Monoenergetic flux (v_e !!) emulated by flux combination
 - Like PRISM, but with more degree of freedom in component shaping

Alves, M. Pfaff nuSTORM@CERN: simulation model

Betatron functions of pions from the horn until the end of the production straight in the nuSTORM ring calculated by tracking in BDSIM

Comparing breakdown mitigation

This plot is not intended to give absolute values for breakdown threshold, but only a feeling of which solutions can be more promising. We scale curves from MUCOOL cavity study (so the nodiffusion model applies only approximately)

Scaled from the first 3 curves using the scaling model (slide 6)

Aluminum cavity with a short pulse looks very promising

Conclusions

- A lot to do
- Critical path for muon collider
- Rough plan:
 - RF Physics Tests at labs e.g. CEA, Daresbury
 - Test module facility @ CERN
 - Test module → Demonstrator staging facility
- Need to look at
 - Instrumentation
 - Engineering integration

