

PIONEER Simulation General Results and Paths Forward

Josh LaBounty Rare Pion Decay Workshop 10/6/2022

Analysis Technique Reminder

What's in the Simulation?

3 10/6/2022 Josh LaBounty | PIONEER | Simulation General Results

Building Up The Simulation: ATAR

Building Up The Simulation: ATAR (Summed)

Takeaway: We need to recombine multiple tracks for some events

Building Up The Simulation: ATAR (Summed)

Takeaway: ATAR impact on CALO Resolution is highest ⊥ to the beam

10/6/2022 Josh LaBounty | PIONEER | Simulation General Results 9

Energy [MeV]

With any physical detector, we don't see a "perfect" spectrum

Calo Resolution: 1.8% ATAR Resolution: 20%

Takeaway: Opening angle and finite length increase the tail fraction.

Takeaway: Geant4's physics cannot be taken as gospel

10⁰

 10^{-1}

 10^{-2}

10-3

 10^{-4}

10-5

(more in Patrick's talk tomorrow)

Photonuclear Effects: Measurements Required

Deposited Energy (MeV)

Figure 5: Simulation of the kinetic energy of the neutrons produced in (white histogram) and those that escaped from (shaded histogram) the NaI(Tl) crystal.

Figure 3: (Top) Deposited energy versus CsI hit timing. (Bottom) The shaded histogram represents events selected by the timing cut (between the lines) shown on the top figure.

Takeaway: A dedicated (prototype) measurement campaign is required to tune the simulation

(MeV) 60

Energy

positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum.

Keywords: Calorimeter, Scintillation detectors, Photonuclear reactions

1. Motivation

[phy

The PIENU experiment at TRIUMF [1] is aiming at a measurement of the branching ratio R = $\Gamma(\pi \rightarrow e\nu + \pi \rightarrow e\nu\gamma)/\Gamma(\pi \rightarrow \mu\nu + \pi \rightarrow \mu\nu\gamma)$ with precision <0.1%. The principal instrument used to measure positron energies from $\pi^+ \rightarrow e^+ \nu$ decave ($E_{e^+} = 70$ MeV) and $\pi^+ \rightarrow \mu^+ \nu$ followed by $\mu^+ \rightarrow e^+ \nu \overline{\nu}$ decays ($E_{e^+} = 0 - 53$ MeV) is a large single crystal NaI(Tl) detector [2]. Detailed knowledge of the crystal response is essential to reaching high precision, especially for determining the low energy tail response below 60 MeV [3]. In the following, results of measurements of the response of the NaI(TI) crystal to mono-energetic positron beams are presented along with Monte Carlo (MC) simulations including photonuclear reactions.

arXiv:1003. 2. Experiment Setup

The 48 cm diameter, 48 cm long NaI(TI) crystal [2] under study was surrounded by two adjacent rings of 97 nure CsI crystals [4]. Each ring was comprised of two layers of 8.5 cm thick, 25 cm long

*Corresponding author. luca@triumf.ca (L. Doria) **Corresponding author, toshio@triumf.ca (T. Numao)

Preprint submitted to Nuclear Instruments and Methods

A 70 MeV/c positron beam was injected into the center of the NaI(TI) crystal. The beam October 30 2018

crystals. Positrons from the M13 beamline at TRI

UMF [5] were injected into the NaI(Tl) crystal to

study its response. The positrons were produced

by 500 MeV protons from the TRIUMF cyclotron

striking a 1 cm thick beryllium target. After defin

ing the beam momentum at the first focus, the M13

beam line is equipped with two more dipole mag-

nets and two foci with slits before the final focus at

the detector. The vacuum window was a 0.13 mm

thick, 15 cm diameter Mylar foil. With this geome

try, slit scattering and the effect of the vacuum win-

dow were expected to have negligible effect on the

low energy tail. The incoming beam was measured

with a telescope (see fig. 1) consisting of 6 plane

of wire chambers arranged in the orientation of X-

U-V-X-U-V, where U(V) was at $60^{\circ}(-60^{\circ})$ to the

vertical direction, a plastic scintillator (5x5 cm area, 3.2 mm thickness), and the NaI(TI) calorime ter. The beam momentum width and horizontal

(vertical) size and divergence were 1.5% in FWHM, 2cm (1cm) and ±50mrad (±90mrad), respectively

The beam composition was 63% π^+ , 11% μ^+ and

3. Measurement and Results

26% +

Nal(Tl) -200200 4 CsI Hit Time (ns) 400 600

0

Dead Material: ATAR Readout

Takeaway: Readouts will affect the energy loss and will capture π^+ , must be carefully engineered.

Adding A Tracker

The tracker which exists in the PIONEER simulation is a basic sketch of the μ R-WELL Geometry

With some rough material estimates, we get an energy loss in a single Proto- μ RWELL tracker layer on the same order as that of the Be LXe window.

Distortion to the calo energy spectrum must be kept to a minimum, and the thickness of the tracker should be incorporated as part of the 'dead material' budget.

Takeaway: The tracker will contribute to the low energy tail, and so any design must be lightweight

Takeaway: A tracker/endcap extending beyond the Calo opening angle will help reduce tail

Note: exaggerated opening angle to illustrate effect

Beam: Tradeoffs of a Degrader

At the test beam, we were unable to achieve an acceptable rate with a 55 MeV/c π^+ beam.

This means that we will need either:

- An upstream degrader to stop the pions in the appropriate place within the ATAR
 - Active (Plastic Scintillator) vs. Passive (Be, reduced scattering)
 - Location carefully chosen to not shadow the calorimeter
- A thicker ATAR, possibly with variable thickness layers

18

Beam Inputs: Realistic Phase Space

In order to finalize the design of the ATAR, we will need to know what the acceptable fiducial volume is.

This changes based on the divergence and momentum spread within the beam. Having an upstream degrader will make some requirements more stringent.

Inputs about the contamination of the beam will also be crucial for simulations of backgrounds

Pre-ATAR

Final Resolution for π_{DAR} Positrons: 1.8% \rightarrow 2.5%

Finally:

100

80

60

40

20

-1.0

Energy [MeV]

- 0.1 cm Be window
- 2 Tracking layers ۲
- ATAR/Calo resolution ۲
- Readouts •

Note: Here no dead material energy 'repair' has been attempted

23 10/6/2022 Josh LaBounty | PIONEER | Simulation General Results

Proposal: Simulation Data Challenge

24

- Critical Inputs: Dec 12th
 - Best guess at all geometries
 - Event combination (pileup generation, etc.)
- External Inputs: Jan 15th
 - Detector response functions
 - Initial analysis features
- Campaign Launches: Jan 31st
 - ~2e9 unbiased π^+ decays
 - ~70 TB of raw simulation data, equivalent amount of reconstructed data
- Afterwards: Analysis Challenge (Feb-March)
 - Replicate a PIENU style analysis using the simulated
 data and 'realistic' detector response

Hope to refine and push forward this idea during the workshop!

a processing

Summary

WPRNEER

The PIONEER Simulation is helping to tackle big design choices, with many knobs to turn. Challenges are large, but not insurmountable.

Takeaways:

- Radiative/scattering processes matter!
- We may need to recombine multiple tracks/event
- ATAR impact on CALO Resolution is highest ⊥ to the beam
- An ATAR with poor energy resolution can be deadly
- ATAR should be as live as possible, but small dead layers aren't a disaster
- Opening angle and finite length increase the tail fraction.
- Geant4's physics cannot be taken as gospel

Josh LaE

- A dedicated prototype measurement campaign is required to tune the simulation
- Immense (but necessary) challenge to design a multi-ton detector with as little dead material as possible
- The tracker will contribute to the low energy tail, and so any design must be lightweight
- A tracker/endcap extending beyond the Calo opening angle will help reduce tail
- ATAR tagging of pions will be essential to reject background

Thank you!

10/6/2022

25

Some more exciting simulation results to see in the next few days!

Thank you!!

Backups

Works In Progress: ATAR

14:00

15:00

16.00

ATAR Group is working hard to make this detector a reality

We will see a lot of interesting talks from them on

- Hardware design/implementation
- Modelling detector response
- Event reconstruction

And much more!

W	PIRNEE
troduction to the ATAR project and session	Simone Michele Mazza
ervantes and Velasquez Room, UC Santa Cruz	13:10 - 13:30
igh granularity fast silicon sensors for the active target	Dr Jennifer Ott
ervantes and Velasquez Room, UC Santa Cruz	13:30 - 14:00
ast silicon sensor simulation with TCAD software	Mohammad Nizam et al.
ervantes and Velasquez Room, UC Santa Cruz	14:00 - 14:30
Iternative active target design based on traditional silicon devices	Xin Qian et al.
ervantes and Velasquez Room, UC Santa Cruz	14:30 - 14:50
offee	
ervantes and Velasquez Room, UC Santa Cruz	14:50 - 15:10
vent simulation and reconstruction in the active target	Vincent Wai Sum Wong
ervantes and Velasquez Room, UC Santa Cruz	15:10 - 15:30
vent reconstruction experience from Lar TPC	Chao Zang
ervantes and Velasquez Room, UC Santa Cruz	15:30 - 15:50
ront end electronics and digitization for fast silicon	Abraham Seiden
ervantes and Velasquez Room, UC Santa Cruz	15:50 - 16:10
verview of BNL Silicon sensor capability	Dr Gabriele Giacomini et al.
ervantes and Velasquez Room. UC Santa Cruz	16:10 - 16:20
NL approved LDRD related discussion and planning	Volodya Tishchenko

Works In Progress: LXe

Input from MEG, PANDAX, and more will be invaluable in forging a path forward.

Many talks from those sharing their experiences with LXe and those in PIONEER beginning to develop tools to understand it.

10:00	MEG resolution and SiPM annealing update	Ayaka Matsushita et al.
11:00	Cervantes and Velasquez Room, UC Santa Cruz	10:00 - 10:30
	LXe R&D and simulation for open and segmented system	Chloe Malbrunot et al.
	Cervantes and Velasquez Room, UC Santa Cruz	10:50 - 11:20
	Simulations of LXe and Hybrid crystal wrt pileup	Patrick Schwendimann
12:00	Cervantes and Velasquez Room, UC Santa Cruz	11:40 - 12:10

Works In Progress: Beam

Results from Run1 beam tests at PSI	Dr Anna Soter
Cervantes and Velasquez Room, UC Santa Cruz	16:20 - 16:50
The beamline model and going forward	Peter Kammel
Cervantes and Velasquez Room, UC Santa Cruz	16:50 - 17:20

30 10/6/2022 Josh LaBounty | PIONEER | Simulation General Results

17:00

Works In Progress: Tracker

Tracker possibilities from Stony Brook

Dr Prakhar Garg et al.

10:00 Cervantes and Velasquez Room, UC Santa Cruz

09:45 - 10:05

WPRNEER

Aside: Angular Distribution of Energies

Aside: ATAR Dead Material

Takeaway: ATAR should be as live as possible, but small dead layers aren't a disaster

WPRNEER

WPRNEER

Building Up The Simulation: ATAR (Summed)

Takeaway: ATAR impact on CALO Resolution is highest ⊥ to the beam

Aside: Choice of Opening Angle Energy vs. θ for various Opening Angles of a 25X₀ LXe calorimeter 17.00 degrees 20.00 degrees 27.50 degrees 100 104 104 104 80 Energy [MeV] Energy [MeV] Energy [MeV] 60 -10² - 10² - 10² 40 20 100 10⁰ 100 0 $Cos(\theta)$ $Cos(\theta)$ $Cos(\theta)$ 35.00 degrees 50.00 degrees 42.50 degrees 100 104 104 - 104 80 Energy [MeV] Energy [MeV] Energy [MeV] 60 10² 10² - 10² 40 20 10⁰ 10⁰ 10⁰ 0 0.0 0.5 -0.5 0.5 -0.5 0.0 0.5 1.0 -1.0 -0.51.0 -1.00.0 1.0 -1.0 $Cos(\theta)$ $Cos(\theta)$ $Cos(\theta)$

LYSO Radioactivity: Constant "Rumble" at 1 Mev WPI NEER

Simulation Upgrade Introduced Photonuclear Changes

Physics List Choice is Important

Photonuclear processes in Geant4 do not conserve energy "on an event by event basis"

Aside: Window Thickness

Takeaway: Immense challenge to design a multi-ton detector with as little dead material as possible

Dead Material: Beampipe

Takeaway: Immense challenge to design a multi-ton detector with as little dead material as possible

Tail Fraction vs. Angular Fiducial Volume

Adding A Degrader

Aside: Dead Material Energy Putback

RMS (%) = 1.802

RMS (%) = 2.123 Tail Fraction (< 58 MeV) = 0.0355 %

Aside: Tracker Energy Loss

Pre-ATAR + Post-ATAR

Takeaway: A tracker/endcap extending beyond the Calo opening angle will help reduce tail

Aside: Pion Decay Locations

17° 25 X₀

Takeaway: ATAR tagging of pions will be essential to reject background

Final Resolution for π_{DAR} Positrons: 1.8% \rightarrow 2.5% Pre + Post ATAR

Finally:

- 0.1 cm Be window
- 2 Tracking layers
- ATAR/Calo resolution
- Readouts

-0.5

0.0

Tracker $Cos(\theta)$

...

100

80

60

40

20

-1.0

Calorimeter+ATAR Edep [MeV]

Note: Here no dead material energy 'repair' has been attempted