

The piE5 Beamline Model and Going Forward

Peter Kammel for the Nascent PIONEER Beam Dynamics Team

David Rubin (Cornell) David Tarazona (Cornell) Urs Langenegger (PSI) Anna Soter (PSI)

Thanks: A. Knecht, P-R. Kettle, Z. Hodges, G. Dal Maso

Workshop is being generously supported by an award from the Gordon and Betty Moore Foundation

10/6/2022

Overview

- Experimental requirements
- piE5 beamline
- PIONEER Run '22 results
- TRANSPORT studies
- Major upgrades
- Beam development plan

Requirements Phase I

- Rate
 - 300k π /s stopped in ATAR
- Momentum bite
 - Δp/p <2%
- Momentum
 - lowest p preferred 55-70 MeV/c
- Spot size
 - smaller than ATAR Size of 20mm x 20mm
- Particle contamination
 - μ/e less than 10% of π

 $R_{e/\mu}(\text{Exp}) = 1.23270(230) \times 10^{-4}$

piE5 @ PSI - World's Brightest Stopped Pion Beam

- carefully studied for fundamental muon experiments
- still surprises for pions, unique PIONEER requirements

experimenters have full control over beam line (after first bend)

Target E and Pion Production

850 kV

6

150 MHz

590 MeV

2.4 mA

2.1 m

4.5 m

~2.10-4

35°

- 8 sector Magnets: 0.6 0.9 T
 weight per magnet: 250 tons
- 4 cavities 50.63 MHz:
- 1 flat top recorder:
- 1 flat-top resonator:
- harmonic number:
- beam energy:
- beam current (now):
- injection radius:
- extraction radius:
- sprial angle
- relative losses:

Beam power: 1.4 MW

- 165⁰ to proton beam
- bending +47.5°, -47.5°, +77.5°

b:

a:

Simple Transport Model

 π^+

- Compare Δp/p= 3/0 %
- 1st order only
 - 2nd order diverges
 - other discrepancies to PIONEER Run '22

- upstream part in shielding
 - indirect diagnostics with slits

MEG tune adjusted to PIONEER geometry, P-R Kettle

extraction, momentum selection and achromat

particle separation, focus on target

Overview

- Experimental requirements
- piE5 Beamline
- PIONEER Run '22 results
- TRANSPORT studies
- Major upgrades
- Beam development plan

Good Enough Focus ?

- Beam behaves as expected (basic p scaling)
 - we measured 28 MeV/c muons and
 - pions of 55, 65 and 75 MeV/c
- Pions better focus than surface muons
- But only 46% of beam in ATAR box
- AST/ASC combination not problematic

Not yet

- Rate: 633 kH / 46 % in ATAR Box
- Mean X = 0.3 mm
- Mean Y = 0.2 mm
- Sig X = 23 mm
 - Sig Y = 10.1 mm

Kammel - Rare Pion Decay Workshop

Sufficient Rate and Small Δp/p ?

- Cannot answer without determination of Δp/p
- First impression
 - 55 MeV/c insufficient
 - 65 MeV/c enough rate
- Longitudinal phase space (i.e. Δp/p), two methods being analyzed

pion signal amplitudes with different degraders

• use $\pi \rightarrow \mu$ sequence to identity stops

Time of flight

- 16m beamline
- 1% Δp/p ~ 1 ns (65 MeV/c)

p (MeV/c)	55	65	75
TOF (ns)	145.57	126.42	112.75

run588

Particle Separation Good Enough?

Separator HV can be increased

TOF (ns)

In area restricted to ATAR (optimistic accounting) e: 25.0% µ: 32.1%

π: 42.9%

Dispersion at Target Location?

../../processed/run307/data/subrun0/WD038_8.root 38_12

TOF changes when when detector moves 5 cm to the left

X=X(P), significant dispersion D at target location, deteriorates focus.

Patrick

Dispersion at Target Location?

$$\frac{dTOF}{dx} \approx 0.9 \text{ ns/cm}$$

D~1 cm/% similar to dispersive section??

Other Results

- Momentum slits inconsistent with simple TRANSPORT model
- Beam meandering in upstream channel
- Quad scan to measure phase space at target
 - indirect, not yet analyzed
 - next time direct measurement with wire chambers?
 - important for beam optimization and extension

Overview

- Experimental requirements
- piE5 beamline
- PIONEER Run '22 results
- TRANSPORT studies
- Major upgrades
- Beam development plan

Final Focus Variants

- vary focus distance
 - closer focus promising
 - larger final quads required
 - but limited by d and calo opening angle

d (m)	FWHM-x	FWHM-y
0.6	1.07	1.15
1.29	1.9	1.8

 typically similar/poorer results with inverted last triplet used in run'22 ??

Magnet Calibration

 Magnet calibration from PSI sources (P-R Kettle and old manuals)

$$B = a_0 + a_1 I + a_2 I^2 + a_3 I^3$$

- Opera field maps available (?), new maps of shielded magnets impossible
- Unfortunately, when translating Run'22 current files, beam optics does not seem correct ??

Overview

- Experimental requirements
- piE5 beamline
- PIONEER Run '22 results
- TRANSPORT studies
- Major upgrades
- Beam development plan

Extend Beam with Two Vertical Foci

- For particle separation and target focus two separate foci required, so that background is rejected outside of detector
 - -1^{st} focus separates particles after ExB velocity filter and reject μ and e on collimator
 - -2^{nd} focus is a double x/y focus aimed at ATAR
- First attempt with s-t promising
- large final magnet
- phase space
 - initial x: 240 π cm mr
 - y: $9 \pi \text{ cm mr}$
 - promising final focus

Smaller Momentum Bite

another exercise in history

Overview

- Experimental requirements
- piE5 beamline
- PIONEER Run '22 results
- TRANSPORT studies
- Major upgrades
- Beam development plan

Beam Development Plan

- Higher order calculations and corrections (chromatic and large transverse phase space)
 modern programs: BMAD, COSY, G4BL
- Characterize individual elements
 - including field maps
 - compare transfer matrices in different programs
 - resolve inconsistencies with actual current files used
- Beamline
 - upstream
 - modern pion production and first bend model (HIMB) (currently historic 2nd order matrix is used in TRANSPORT)
 - systematic measurement program with slits
 - proper higher order sextupol corrections
 - downstream
 - optimize separation and final focus

Beam Development Plan

 Explore/explain most striking puzzles

Kammel - Rare Pion Decay Workshop

Beam Development Plan

- Higher order calculations and corrections
 modern programs: BMAD, COSY, G4BL
- Characterize individual elements
 - including field maps
 - resolve inconsistencies with actual current files used
- Beamline
 - upstream
 - systematic measurement program with slits
 - modern pion production and first bend model
 - proper higher order sextupol corrections
 - downstream
 - focusing and separation
- Explore/explain most striking puzzles

- Major upgrade studies
- Two vertical foci
- upstream retune for large dispersion
- dE/dx $\pi/\mu/e$ separation in last bends?

Summary

- Overall promising results, but
 - PIONEER requirements are challenging and unique
 - lot of work remains towards realizing the potential
 - often success of ambitious experiment intimately linked to beam quality

- synergy with
 - High Intensity Muon Beam project
 - Cornell center?
 - Muon g-2 as template

Backup

piE1 study for PIONEER

• Beamline setup (Peter 10/10/22)

• Profiles

	sx (cm)	sy (cm)
1st order	0.445	0.266
2nd order	1.134	0.552

• Initial phase space

	ε (cm mr)	X (cm)	X' (mr)						
х	12.5	0.6	25						
у	40	0.3	160						

piE1 beamline

TITEL	LABEL	Z		Х		Y		R16		R36													
BEAM	BEAM	0	m	0.5	cm	0.25	cm	0	cm/%	0	cm/%												
DRIFT		0.638	m	1.67	cm	10.21	cm	0	cm/%	0	cm/%	*ROTAT*	R32	12.435	m	9.11	cm	1.4	cm	0.01	cm/%	0	cm/%
QUAD	QTH1	1.238	m	4.73	cm	11.69	cm	0	cm/%	0	cm/%	*Z RO*		12,435	m	9.11	cm	1.4	cm	0.01	cm/%	0	cm/%
DRIFT		1.393	m	6.11	cm	9.89	cm	0	cm/%	0	cm/%	*DRIFT*	νκα β	12 735	m	10.06	cm	1 36	cm	0.02	cm/%	0	cm/%
QUAD	QTH2	1.993	m	8.85	cm	5.71	cm	0	cm/%	0	cm/%	*DRIFT*	10.0	13 55	m	12.64	cm	3.18	cm	0.02	cm/%	0	cm/%
DRIFT	FSH1	2.218	m	8.78	cm	5.03	cm	0	cm/%	0	cm/%		0012	14.45	- m	0.24	0111	6.60	0111	0.00	om/0/	0	cm/%
DRIFT		2.443	m	8.72	cm	4.35	cm	0	cm/%	0	cm/%		QSL3	14.10	m	9.31	CIII	0.02	CIII	0.02	CIII/ %	0	CIII/%
QUAD	QTH3	3.043	m	8.54	cm	2.6	cm	0	cm/%	0	cm/%		0014	14.25	m	7.96	cm	7.55	cm	0.02	CM/%	0	Cm/%
DRIFT		3.693	m	8.35	cm	1.29	cm	0	cm/%	0	cm/%	*QUAD*	QSL4	14.85	m	3.38	cm	8.11	cm	0.02	cm/%	0	cm/%
Z RO		3.693	m	8.35	cm	1.29	cm	0	cm/%	0	cm/%	*DRIFT*		15.05	m	2.72	cm	6.57	cm	0.02	cm/%	0	cm/%
ROTAT	R11	3.693	m	8.35	cm	1.29	cm	0	cm/%	0	cm/%	*DRIFT*	PID	15.9	m	0.4	cm	0.52	cm	0.03	cm/%	0	cm/%
BEND	ASZ1	4.389	m	8.22	cm	2.29	cm	-0.17	cm/%	0	cm/%	*DRIFT*	L1	16.5	m	2.14	cm	4.69	cm	0.03	cm/%	0	cm/%
BEND	ASZ1	5.086	m	6.12	cm	4.32	cm	-0.64	cm/%	0	cm/%												
ROTAT	R12	5.086	m	6.12	cm	4.32	cm	-0.64	cm/%	0	cm/%	*FRINGE*		16.5	m	2.18	cm	4.61	cm	0.03	cm/%	0	cm/%
Z RO		5.086	m	6.12	cm	4.32	cm	-0.64	cm/%	0	cm/%	*OUAD*	OSI 5	16.89	m	4 69	cm	53	cm	0.05	cm/%	0	cm/%
DRIFT		6.132	m	3.27	cm	6.84	cm	-1.64	cm/%	0	cm/%	QUILD	QOLO	10.00		1.00	om	0.0	0111	0.00	0111/ 70	Ū	
QUAD	QTB1	6.607	m	3.32	cm	6.11	cm	-2.61	cm/%	0	cm/%			16.00	-	4 50		E 20		0.05	om /0/	0	am/0/
DRIFT		6.712	m	3.58	cm	5.55	cm	-2.96	cm/%	0	cm/%	FRINGE		10.09	m	4.56	Cm	5.39	Cm	0.05	CIII/%	0	CIII/%
QUAD	QTB2	7.187	m	4.33	cm	3.74	cm	-4.03	cm/%	0	cm/%	^DRIFT^		17	m	5.76	cm	4.9	cm	0.06	cm/%	0	cm/%
DRIFT		7.68	m	4.66	cm	2.6	cm	-4.55	cm/%	0	cm/%												
ROTAT		7.68	m	4.66	cm	2.6	cm	-4.55	cm/%	0	cm/%	*FRINGE*		17	m	5.61	cm	5.07	cm	0.06	cm/%	0	cm/%
BEND	ASY1	8.149	m	4.88	cm	1.76	cm	-4.82	cm/%	0	cm/%	*QUAD*	QSL6	17.39	m	5.32	cm	7.09	cm	0.05	cm/%	0	cm/%
BEND	ASY1	8.618	m	4.77	cm	1.57	cm	-4.64	cm/%	0	cm/%												
ROTAT		8.618	m	4.77	cm	1.57	cm	-4.64	cm/%	0	cm/%	*FRINGE*		17.39	m	5.46	cm	6.82	cm	0.05	cm/%	0	cm/%
DRIFT		9.071	m	4.57	cm	2.18	cm	-4.25	cm/%	0	cm/%	*DRIFT*		17.5	m	4.13	cm	8.64	cm	0.04	cm/%	0	cm/%
QUAD	QSL1	9.671	m	3.69	cm	3.97	cm	-2.98	cm/%	0	cm/%												
DRIFT		9.771	m	3.45	cm	4.39	cm	-2.66	cm/%	0	cm/%	*ERINGE*		17 5	m	1 28	cm	8 1 1	cm	0.04	cm/%	0	cm/%
QUAD	QSL2	10.371	m	3.47	cm	5.27	cm	-1.44	cm/%	0	cm/%			17.0	- m	4.70	0111	0.74	0111	0.04	om/0/	0	cm/%
DRIFT	FS53	10.671	m	4.25	cm	4.84	cm	-1.13	cm/%	0	cm/%	QUAD	QSL/	17.09	m	1.73	CIII	0.70	Cm	0.01	CI11/ %	U	CIII/%
DRIFT		11.229	m	5.89	cm	4.08	cm	-0.54	cm/%	0	cm/%	*===		1 - 00							10 /		10.1
Z RO		11.229	m	5.89	cm	4.08	cm	-0.54	cm/%	0	cm/%	*FRINGE*		17.89	m	1.69	cm	8.99	cm	0.01	cm/%	0	cm/%
ROTAT	R31	11.229	m	5.89	cm	4.08	cm	-0.54	cm/%	0	cm/%	*DRIFT*		18.49	m	0.44	cm	0.27	cm	-0.03	cm/%	0	cm/%
BEND	ASL1	11.832	m	8.44	cm	2.49	cm	-0.14	cm/%	0	cm/%	*DRIFT*	Т	18.491	m	0.44	cm	0.27	cm	-0.03	cm/%	0	cm/%
BEND	ASL1	12.435	m	9.11	cm	1.4	cm	0.01	cm/%	0	cm/%												

Properties of beam particles

range

- cone angle $+-10^{\circ}$
- 2 x-y layer 50um LGAD
- Halo veto scint

Paul Scherrer Institute

PSI Proton Accelerator HIPA

A multi-disciplinary research driver

SiMon & Garfunkel

Work provided by Anna, Damian and Co.

- 200mm horizontal motion, sub-mm granularity
- 75mm vertical extent, 31 scintillator pills, 2.5mm granularity (SiMon)
- 20mm x 20mm single-pill detector (Garfunkel)
- Record scalers (fast) and waveforms (slow, optional) at every horizontal step
- Take full 2D profiles at 2.5mm granularity
- Park detectors at static position for rate observations
- Automatic magnet scan: simple (single magnet range), arbitrary (config file)
- Semi-automatic threshold adjustment based on amplitude profile and/or homogeneous illumination (wide beam)

