PAUL SCHERRER INSTITUT

Andreas Crivellin

PSI & UZH Finding New Physics with PIONEER

PIONEER collaboration meeting, 07.10.2022

Work supported by FNSNF

Outline

- Introduction
- Anomalies
 - LFUV
 - Cabibbo Angle Anomaly
 - Non-resonant di-leptons
 - W mass and EW fit
- Explanations
- Implications for PIONEER
- Conclusions

PIONEER Goals

- Improve
 - $-R(\pi)=\pi\rightarrow\mu\nu/\pi\rightarrow e\nu$
 - Pion beta decay $\pi^+ \rightarrow \pi^0 ev$

by an order of magnitude compare to current limits

- Provide most precise test of
 - $-\mu/e$ universality
 - CKM unitarity

What is the impact of these measurements? Which New Physics can be found?

Hints for New Physics

Expanations

Cabibbo Angle Anomaly (CAA) talk of Martin

- Deficit in first row and first column CKM unitarity $\begin{vmatrix} V_{ud}^{2} \\ + \\ V_{us}^{2} \\ + \\ V_{ud}^{2} \\ \end{vmatrix} + \begin{vmatrix} V_{ub}^{2} \\ V_{ub}^{2} \\ \end{vmatrix} = 0.9985 \pm 0.0005$ (PDG) $\begin{vmatrix} PDG \\ AC, Hoferichter, Manzari, PRL 127 (2021) \end{vmatrix}$
- NP in the determination of V_{ud} from beta decays needed
- Can be interpreted as
 - NP in beta decays
 - NP in the Fermi constant
 - LFUV (modified Wµv coupling)

3σ tension, can be interpreted as LFUV

 $\mu \rightarrow e \nu \nu$ CKM CKM A Kaon & β decays EW (full) EW (minimal) 1.165 1.165 1.166 1.1665 1.167 1.1675 1.168 $G_F [10^{-5}/\text{GeV}^2]$

Page 7

Cabibbo Angle Anomaly and EW Fit

- 4fermion effect in beta decays
 - LQs
 - W'
- Modifed W coupling in muon decay
 - W-W' mixing
 - Vector-like leptons
- 4 fermion effect in muon decay
 Z'
 - Singly charged scalar
- Modified Wud coupling –Vector-like quarks

$>5\sigma$ improvement over SM hypothesis with VLLs

CAA and Non-Resonant Di-Leptons

4.5 σ better than SM, prediction for R(π)

Leptoquarks

1.0

0.8

0.6

0.4

0.2

0.0

1000

2000

 λ_3

- 10 representations
- Effect in R(π) and beta decays

*m*₃ [GeV]

3000

4000

 Φ_3

Simple model provides combined explanation

Vector-like leptons

- 5 represenations of which 3 generate modified Wlv couplings
- Bounds from EW precision observables

Observable	Measurement	SM Posterior	NP Posterior	Pull		
$M_W [{ m GeV}]$	80.379(12)	80.363(4)	80.369(6)	0.56		
$R\left[\frac{K \to \mu\nu}{K \to e\nu}\right]$	0.9978 ± 0.0020	1	1.00168(39)	-0.80		
$R\left[\frac{\pi \to \mu\nu}{\pi \to e\nu}\right]$	1.0010 ± 0.0009	1	1.00168(39)	0.42		
$R\left[\frac{\tau \to \mu \nu \bar{\nu}}{\tau \to e \nu \bar{\nu}}\right]$	1.0018 ± 0.0014	1	1.00168(39)	1.2		
$ V_{us}^{K_{\mu3}} $	0.22345(67)	0.22573(35)	0.22519(39)	0.77		
$ V_{ud}^{eta} $	0.97365(15)	0.97419(8)	0.97378(13)	2.52		

Effect in R(π), R(K) and LFUV in τ decays

W' in $R(V_{us}) \& b \rightarrow sll$

- Region preferred by EW fit overlaps with b→sll region
- Correlations
 between
 e.g. π→μν/π→ev
 and R(K^(*)) are
 predicted
- Global fit significantly improved

Common explanation possible

Impact of PIONEER

- Test μ -e LFUV with unprecedented precision
- Measure V_{ud} in theoretically clean pion beta decay
- Test of New Physics model
 - Leptoquarks
 - Vector-like leptons
 - W`bosons
 - Vector-like quarks
 - Light new physics talks of Asaf and Robert

Impact of PIONEER II

Conclusions

- Many intriguing anomalies emerged in the last years:
 - LFUV
 - EW observables
 - Direct LHC searches

The Standard Model is crumbling; PIONEER can contribute to its fall

Backup

Discovering New Physics

- Cosmic Frontier Energy Cosmic rays and neutrinos **Frontier** – Dark Matter – Dark Energy Energy Frontier NP -LHCCosmic Intensity - Future colliders **Frontier Frontier** Intensity Frontier – Flavour
 - Neutrino-less double-β decay
 - Test of fundamental symmetries
 - Proton decay

Indirect Searches for New Physics

 Perfrom high-statistics measurements to search for the quantum effects of new particles

Flavour observables can be sensitive to higher energy scales than collider searches

Model for b \rightarrow sll, CAA, Z \rightarrow bb and $\tau \rightarrow \mu\nu\nu$

Simple model provides combined explanation

Implications for FCC-ee

Correlations the neutron EDM with S1

Effect in B predicts measurable nEDM effect

$R(D^{(*)}), b \rightarrow sll and a_{\mu}$

4 benchmark points

AC, D. Mueller, F. Saturnino arxiv:1912.04224

	κ_{22}	κ_{32}	κ_{23}	κ_{33}	λ_{22}	λ	32	λ_{23})	\ ₃₃	$\hat{\lambda}_{32}$	2	$\hat{\lambda}_{23}$	
$\bullet p_1$	-0.019	-0.059	0.58	-0.11	-0.0082	-0.	.016	-1.46	-0	.064	-0.1	19	1.34	
$\bullet p_2$	-0.017	-0.070	-1.23	0.066	0.0078	-0.	.055	1.36	0.	052	-0.0	53	-1.47	
• p ₃	0.0080	0.081	1.18	-0.073	-0.0017	0.	16	-0.76	-0	.068	0.02	23	1.23	
$\bullet p_4$	-0.0032	-0.21	0.44	-0.20	0.014	-0	0.10	-1.38	-0	.068	-0.0	32	0.57	
	$C_{0}^{\mu\mu} = -C_{1}^{\mu}$		R(D)	$R(D^*)$	$B_s \rightarrow T$	$\tau \tau$	$\tau \to \mu \tau$	$\gamma \qquad \delta a$	$\begin{array}{c c} \delta a_{\mu} & \tilde{V}^{e}_{cb}/V \\ \times 10^{11} & \times \end{array}$		$\frac{7^{\mu}}{cb} - 1$	$Z \rightarrow \tau \mu$		
		10 5	$R(D)_{\rm SN}$	$I \qquad R(D^*)_{\mathbf{SI}}$	$M \qquad B_s \to \tau \tau$	$ _{\rm SM} \times 10^{\circ}$		×10			.10°		$\times 10^{10}$	
$\bullet p_1$	-0.52	-0.2	1 1.15	1.10	59.88	3	4.35	20	207		91		0.117	
$\bullet p_2$	-0.56	-0.2	8 1.14	1.10	99.76	3	0.766	19)9 4		48		2.38	
● p ₃	-0.31	-0.3	1 1.14	1.09	112.5	3.62		25	255		17		0.129	
$\bullet p_4$	-0.31	-0.3	1 1.13	1.11	1.11 112.5		0.734 23		0	934		45.6		
$C^{\tau\tau} = -AC^{\tau}$		$C^{\tau\tau}$	$R^{K^{(*)}}$	$\Delta m_{B_s}^{\rm NP}$	$B \to K$	$\tau\mu$	$\tau \to \phi_{\mu}$	$\mu \tau \to$	μee	$ \Lambda_{33}^{LC} $	$ ^{2}(0) $	Δ	$\frac{L}{33}(m_Z^2)$	
	$O_{SL} = -4O$		$\Gamma^{\mu}\nu\bar{\nu}$	$\Delta m_{B_s}^{\rm SM}$	$\times 10^5$		$\times 10^{8}$	$\times 10^8$ $\times 10$		$\times 10^5$		$\Lambda_{\rm SM}^{L\ell} \times 10^{-5}$		
• <i>p</i> ₁	0.023	0.04) 2.33	0.1	0.512	2	1.27	7 44.94		1.	1.11		-3.64	
$\bullet p_2$	0.020	0.04	0.87	0.16	3.32		4.73	7.78	83	0.	90		-3.02	
● p ₃	0.023	0.03	7 1.08	0.19	4.07		1.00	37.8	37.89		0.89		-3.51	
$\bullet p_4$	0.010	0.04	2.43	0.18	3.69		0.0021	18.0	60	3.	12	-	-10.04	

Common explanation possible

Important Loop-Effects

 Explanation of b→cτν requires large bτ and sτ couplings (follows from SU(2) invariance)

AC, C. Greub, D. Müller, F. Saturnino, PRL 2018

Large loop effects in $b \rightarrow s \mu \mu$

R(D^(*)) and b \rightarrow s $\tau\tau$

Large couplings to the second generation

B. Capdevila, AC, S. Descotes-Genon, L. Hofer and J. Matias, PRL.120.181802

Important Loop-Effects

- Explanation of b \rightarrow c $\tau\nu$ requires large LQ-b τ and LQ-c- ν_{τ} couplings
- Via SU(2) invariance this leads to large effects in

b→sττ processes

- Closing the tau-loop gives a LFU effect in $b \rightarrow sll$ M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, PRD, 2019
- Effect goes in the right direction

Explanation of $b \rightarrow c\tau v$ leads to loop effects in $b \rightarrow s\mu\mu$

Vector LQ Phenomenology

Compatible with constraints for generic couplings

Possible UV completions

- SU(4)×SU(3)'×SU(2)_L×U(1)_Y + Vector-like fermions
 L. Di Luzio, A. Greljo, M. Nardecchia, arXiv:1708.08450
- SU(4)×U(2)_L×SU(2)_R + Vector-like fermions L. Calibbi, AC, T. Li, arXiv:1709.00692
- SU(4)×SU(4)×SU(4)
 M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv:1712.01368
- SU(4)×SU(2)_L×SU(2)_R including scalar LQs and light right-handed neutrinos
 J. Heeck, D. Teresi, arXiv:1808.07492
- SU(8) might even explain ε'/ε
 S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312
- SU(4)×SU(2)_L×SU(2)_R in RS background

M. Blanke, AC, arXiv:1801.07256

Good solution, but challenging UV completion

τ→μνν

 $\approx 2\sigma$ hint for LFUV in tau decays

τ→μνν

A.C., F. Kirk, C. Manzari, L. Panizzi, arXiv:2012.09845

4σ hint for modified neutrino couplings

Vector Triplet in $R(V_{us}) \& b \rightarrow sll$

 J_{22}^{ℓ}

- Region preferred by EW fit overlaps with b→sll region
- Correlations
 between
 e.g. π→μν/π→ev
 and R(K^(*)) are
 predicted
- Global fit significantly improved

Common explanation possible