Status and prospects of the first-row CKM unitarity test

Martin Hoferichter

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS October 7, 2022 Rare Pion Decay Workshop UC Santa Cruz

Benchmarks numbers for	CKM tests from PDG	
------------------------	--------------------	--

first row:	$ V_{ud} ^2 + V_{us} ^2 + V_{ub} ^2 = 0.9985(5)$
second row:	$ V_{cd} ^2 + V_{cs} ^2 + V_{cb} ^2 = 1.025(22)$
first column:	$ V_{ud} ^2 + V_{cd} ^2 + V_{td} ^2 = 0.9970(18)$
second column:	$ V_{us} ^2 + V_{cs} ^2 + V_{ts} ^2 = 1.026(22)$

• First-row unitarity test

- Testing consistency of V_{ud} and V_{us} at precision of a few times 10^{-4}
- $|V_{ub}|^2 \simeq 1.5 \times 10^{-5}$
- Deficit of $(2-3)\sigma$ (also deficit in first-column test, but less sensitive)
- Second row/column more than an order of magnitude away; third row/column $\mathcal{O}(\lambda^4)$
- This talk:
 - Review inputs to first-row test, focus on uncertainties
 - Discuss prospects for improvements
 - Explain why we like pion β decay

Determination of V_{ud} from superallowed β decays

Master formula Hardy, Towner 2018

$$|V_{ud}|^2 = \frac{2984.432(3)\,\mathrm{s}}{\mathcal{F}t(1+\Delta_R^V)}$$

with (universal) radiative corrections Δ_R^V

• Value of V_{ud} crucially depends on Δ_R^V :

Ref.	Δ_R^V	
Marciano, Sirlin 2006	0.02361(38)	
Seng, Gorchtein, Patel, Ramsey-Musolf 2018	0.02467(22)	
Czarnecki, Marciano, Sirlin 2019	0.02426(32)	
Seng, Feng, Gorchtein, Jin 2020	0.02477(24)	
Hayen 2020	0.02474(31)	
Shiells, Blunden, Melnitchouk 2021	0.02472(18)	
Cirigliano, Crivellin, MH, Moulson 2022	0.02467(27)	

Hardy, Towner 2020

 \hookrightarrow main uncertainty from Regge region,

lattice QCD to improve?

M. Hoferichter (Institute for Theoretical Physics) Status and prospects of the first-row CKM unitarity test

Determination of V_{ud} from superallowed β decays

Further corrections

- Isospin breaking Miller, Schwenk 2008, 2009, Condren, Miller 2022, Seng, Gorchtein 2022, Crawford, Miller 2022
- Nuclear corrections Seng, Gorchtein, Ramsey-Musolf 2018, Gorchtein 2018
- Estimate from Gorchtein 2018 becomes dominant source of uncertainty

$$\lambda_{ud}^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_{U}^{R}}(27)_{NS}[32]_{total}$$

 Improvements from ab-initio nuclear structure? Martin, Stroberg, Holt, Leach 2021

Hardy, Towner 2020

Determination of V_{ud} from neutron decay

• Master formula Czarnecki, Marciano, Sirlin 2018

$$|V_{ud}|^2 \tau_n (1 + 3g_A^2)(1 + \Delta_{\rm RC}) = 5099.3(3) \, {\rm s}$$

with radiative corrections Δ_{RC}

- \hookrightarrow need lifetime τ_n and asymmetry $\lambda = g_A/g_V$
- PDG average especially for g_A includes large scale factors

Determination of V_{ud} from neutron decay

Results for V_{ud}

$$\begin{split} V_{ud}^{n,\,\text{PDG}} &= 0.97441(3)_f(13)_{\Delta_R}(82)_{\lambda}(28)_{\tau_n}[88]_{\text{total}} \\ V_{ud}^{n,\,\text{best}} &= 0.97413(3)_f(13)_{\Delta_R}(35)_{\lambda}(20)_{\tau_n}[43]_{\text{total}} \end{split}$$

 \leftrightarrow average of $V_{ud}^{0^+ \rightarrow 0^+}$ with $V_{ud}^{n, \text{best}}$ gives $V_{ud}^{\beta} = 0.97384(26)$

Need improved measurements especially for g_A to make progress

Determination of V_{ud} from pion β decay

• Master formula Cirigliano, Knecht, Neufeld, Pichl 2003, Czarnecki, Marciano, Sirlin 2020, Feng et al. 2020

$$\Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2 M_{\pi^{\pm}}^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) I_{\pi\ell}$$

 \hookrightarrow need branching fraction and pion life time from experiment

- (Theory) inputs
 - Phase space $I_{\pi\ell} = 7.3766(43) \times 10^{-8}$
 - Form factor $f_{+}^{\pi}(0) = 1 7 \times 10^{-6}$

 \hookrightarrow protected by SU(2) Ademollo–Gatto theorem (Behrends–Sirlin)

- Radiative corrections $\Delta_{RC}^{\pi\ell} = 0.0334(10)$ ChPT, Cirigliano et al., $\Delta_{RC}^{\pi\ell} = 0.0332(3)$ lattice QCD, Feng et al.
- Resulting V_{ud} extracted from PIBETA 2004

$$V_{ud}^{\pi,\text{ChPT}} = 0.97376(281)_{\text{BR}}(9)_{\tau_{\pi}}(47)_{\Delta_{\text{RC}}^{\pi\ell}}(28)_{l_{\pi\ell}}[287]_{\text{tota}}$$
$$V_{ud}^{\pi,\text{lattice}} = 0.97386(281)_{\text{BR}}(9)_{\tau_{\pi}}(14)_{\Delta_{\text{BC}}^{\pi\ell}}(28)_{l_{\pi\ell}}[283]_{\text{tota}}$$

 \hookrightarrow factor 10 possible before other errors creep in (same as for $R_{e/\mu}$)

Determination of V_{us}/V_{ud} from kaon decays: $K_{\ell 2}/\pi_{\ell 2}$

• $K_{\ell 2}$ decays: $K \rightarrow \ell \nu_{\ell}$

$$\frac{V_{us}}{V_{ud}}\frac{F_{K}}{F_{\pi}} = \left(\frac{\Gamma(K^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{\pi}}{\Gamma(\pi^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{K}}\right)^{1/2} \frac{1 - \frac{m_{\mu}^{2}}{M_{\pi}^{2}}}{1 - \frac{m_{\mu}^{2}}{M_{K}^{2}}} \left(1 - \underbrace{\frac{\Delta_{\mathrm{RC}}^{K} - \Delta_{\mathrm{RC}}^{\pi}}{2}}_{\Delta_{\mathrm{RC}}^{K\pi}/2}\right)$$

- Consider the ratio over $\pi_{\mu 2}$ because
 - Only need ratio of decay constant
 - Certain structure-dependent radiative corrections cancel
- Need theory input for:
 - Decay constants in isospin limit: $F_K/F_{\pi} = 1.1978(22)$ HPQCD 2013, Fermilab/MILC 2017, CalLat 2020, ETMC 2021
 - Isospin-breaking corrections: $\Delta_{BC}^{K\pi} = -0.0112(21)$ ChPT, Cirigliano, Neufeld 2011,

$$\Delta_{\mathsf{RC}}^{K\pi} = -0.0126(14)$$
 lattice, Di Carlo et al. 2019

Result:

$$\frac{V_{US}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_\pi}(16)_{\text{IB}}[51]_{\text{total}}$$

•
$$K_{\ell 3}$$
 decays: $K \to \pi \ell \nu_{\ell}$

$$\Gamma(\mathcal{K} \to \pi \ell \nu_{\ell}(\gamma)) = \frac{C_{\mathcal{K}}^2 G_{\mathcal{F}}^2 |V_{\mathcal{U}\mathcal{S}}|^2 M_{\mathcal{K}}^5 |f_+^{\mathcal{K}\pi}(0)|^2}{192\pi^3} \left(1 + \underbrace{\Delta_{\mathcal{RC}}^{\mathcal{K}\ell}}_{\Delta_{\mathsf{EM}}^{\mathcal{K}} + \Delta_{\mathcal{SU}(2)}}\right) I_{\mathcal{K}\ell}$$

 $\hookrightarrow \ell = \mu, e$ and two charge channels

- Need theory input for:
 - Form factor: $f_+^{K\pi}(0) = 0.9698(17)$ ETMC 2016, Fermilab/MILC 2019
 - Radiative corrections: $\Delta_{SU(2)} = 0.0252(11)$ Cirigliano et al. 2002, $\Delta_{EM}^{K^0 e} = 0.0116(3)$, $\Delta_{EM}^{K^+ e} = 0.0021(5)$, $\Delta_{EM}^{K^0 \mu} = 0.0154(4)$, $\Delta_{EM}^{K^+ \mu} = 0.0005(5)$ Seng et al. 2022

Result:

$$V_{us}^{K_{\ell 3}} = 0.22330(35)_{exp}(39)_{f_+}(8)_{IB}[53]_{tota}$$

Tensions in the $V_{ud} - V_{us}$ plane

Global-fit point away from unitarity line

 $(\Delta_{\rm CKM} = |V_{ud}|^2 + |V_{us}|^2 - 1)$

 $V_{ud} = 0.97378(26)$ $V_{us} = 0.22422(36)$

$$\Delta_{\rm CKM} = -1.48(53) \times 10^{-3}$$
 [2.8 σ]

Three possible measures of the CKM tension

$$\begin{split} \Delta_{\text{CKM}}^{(1)} &= \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{\mathcal{K}_{\ell 3}} \right|^2 - 1 \\ &= -1.76(56) \times 10^{-3} \quad [3.1\sigma] \\ \Delta_{\text{CKM}}^{(2)} &= \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{\mathcal{K}_{\ell 2}/\pi_{\ell 2},\beta} \right|^2 - 1 \\ &= -0.98(58) \times 10^{-3} \quad [1.7\sigma] \\ \Delta_{\text{CKM}}^{(3)} &= \left| V_{ud}^{\mathcal{K}_{\ell 2}/\pi_{\ell 2},\mathcal{K}_{\ell 3}} \right|^2 + \left| V_{us}^{\mathcal{K}_{\ell 3}} \right|^2 - \\ &= -1.64(63) \times 10^{-2} \quad [2.6\sigma] \end{split}$$

Cirigliano, Crivellin, MH, Moulson 2022

 \hookrightarrow already tension in kaon sector alone 2.6 σ

1

- Corroborating V_{ud}
 - Nuclear-structure corrections for superallowed β decays
 - Improved neutron-decay measurements (g_A, τ_n)
 - Pion β decay
- Corroborating V_{us}
 - Improved lattice calculations of F_K/F_{π}
 - A new measurement of K_{µ3}/K_{µ2}
 - au and hyperon decays sensitive to V_{us} , but feasible at the relevant level of accuracy?

A new measurement of $K_{\mu3}/K_{\mu2}$, why?

	current fit	$\kappa_{\mu3}/\kappa_{\mu2}$ BR at 0.5%		$K_{\mu3}/K_{\mu2}$ BR at 0.2%			
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ
$\frac{\frac{V_{US}}{V_{Ud}}}{\frac{V_{\ell 2}}{V_{\ell 2}}} _{K_{\ell 2}/\pi_{\ell 2}}$	0.23108(51)	0.23108(50)	0.23085(51)	0.23133(51)	0.23108(49)	0.23071(51)	0.23147(52)
	0.22330(53)	0.22337(51)	0.22360(52)	0.22309(54)	0.22342(49)	0.22386(52)	0.22287(52)
10 ² ∆ <mark>(3)</mark> CKM	-1.64(63) -2.6σ	-1.57(60) -2.6σ	-1.18(62) -1.9σ	-2.02(63) -3.2σ	-1.53(59) -2.6σ	-0.83(62) -1.4σ	-2.33(62) -3.8σ

• Is the $K_{\ell 3}$ vs. $K_{\ell 2}$ tension real or an experimental problem?

- $K_{\ell 2}$ data base completely dominated by KLOE 2006
- Global fit to kaon data not great, p-value $\simeq 1\%$
- This can be clarified with a new precision measurement of $K_{\mu3}/K_{\mu2}$:
 - In case the tension were of experimental origin, there should be a positive shift compared to current fit

 $\hookrightarrow \Delta_{\text{CKM}}^{(3)}$ would move from -2.6σ to -1.4σ for a $+2\sigma$ shift with a 0.2% measurement

 In case the tension were of BSM origin, the current value would be confirmed (or move further in the other direction)

\hookrightarrow a single new precision measurement would have a huge impact!

• For $K_{\ell 2}$ and $\pi_{\ell 2}$ decays one uses the ratio

$$\boldsymbol{R}_{\boldsymbol{A}} = \frac{\Gamma(K^+ \to \mu^+ \nu_{\mu}(\gamma)}{\Gamma(\pi^+ \to \mu^+ \nu_{\mu}(\gamma)} = \left(\frac{\boldsymbol{V}_{\boldsymbol{us}}}{\boldsymbol{V}_{\boldsymbol{ud}}} \frac{\boldsymbol{F}_{\boldsymbol{K}}}{\boldsymbol{F}_{\pi}}\right)^2 \frac{\boldsymbol{M}_{\boldsymbol{K}}}{\boldsymbol{M}_{\pi}} \left(\frac{1 - \frac{m_{\mu}^2}{M_{\boldsymbol{K}}^2}}{1 - \frac{m_{\mu}^2}{M_{\pi}^2}}\right)^2 \left(1 + \Delta_{\boldsymbol{R}\boldsymbol{C}}^{\boldsymbol{K}} - \Delta_{\boldsymbol{R}\boldsymbol{C}}^{\boldsymbol{\pi}}\right)$$

to cancel uncertainties and extract V_{us}/V_{ud}

• Can do the same for $K_{\ell 3}$ and $\pi_{\ell 3}$ Czarnecki, Marciano, Sirlin 2020

$$\mathbf{R}_{\mathbf{V}} = \frac{\Gamma(\mathbf{K} \to \pi \ell \nu_{\ell}(\gamma))}{\Gamma(\pi^+ \to \pi^0 \mathbf{e}^+ \nu_{\mathbf{e}}(\gamma))}$$

- Need a factor 2–3 to obtain a competitive value of V_{us}/V_{ud}, first goal for PIONEER
- Caveats: contrary to *R*_A no cancellation of structure-dependent radiative corrections nor gains in form-factor determination
 - \hookrightarrow need factor 10 of Phase III to unleash full potential

Conclusions

- Tensions among β decays and kaon decays point to the apparent violation of CKM unitarity
- Tension at the level of $(2-3)\sigma$
 - \hookrightarrow more work needed to corroborate or resolve
- Pion β decay clean, competitive probe of V_{ud} if branching fraction improved by a factor 10
- One order of magnitude to go before other errors become relevant, next one from M_{π⁰}, not theory!
- New precision measurement of K_{μ3}/K_{μ2} to

clarify situation in kaon sector

• Possible BSM interpretations of it all next talk by A. Crivellin

BSM searches with pion β decay

Generalize master formula to include effective operators not present in SM

$$\begin{split} \Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) &= \frac{G_F^2 |V_{ud}|^2}{192\pi^3 M_\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) \int_{m_e^2}^{(M_\pi - M_\pi 0)^2} ds \, \lambda^{3/2}(s) \left(1 + \frac{m_e^2}{2s}\right) \left(1 - \frac{m_e^2}{s}\right)^2 \\ &\times \left[|V(s)|^2 + |A(s)|^2 + \frac{4(s - m_e^2)^2}{9sm_e^2} |T(s)|^2 + \frac{3m_e^2 (M_\pi^2 - M_{\pi 0}^2)^2}{(2s + m_e^2)\lambda(s)} \left(|S(s)|^2 + |P(s)|^2\right)\right] \end{split}$$

with V(s), A(s), ... depending on Wilson coefficients c_V , c_A , ...

- Tensor: $T(s) = \frac{3s}{2s+m_{\theta}^2} \frac{m_{\theta}}{M_{\pi}} c_T B_T^{\pi}(s)$
 - \hookrightarrow suppressed by electron mass and tensor form factor
- Scalar: more competitive constraints, but still not at the same level as other β decays Falkowski, Gonzáles-Alonso, Naviliat-Cuncic 2020

V_{ud} tension as a sign for the violation of lepton flavor universality?

- Let us parameterize the *W* couplings as $\mathcal{L} = -i \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} (\delta_{ij} + \varepsilon_{ij})$
- Modifies Fermi constant in muon decay

$$rac{1}{ au_{\mu}}=rac{(G_{F}^{\mathcal{L}})^{2}m_{\mu}^{5}}{192\pi^{3}}(1+\Delta q)(1+arepsilon_{ee}+arepsilon_{\mu\mu})^{2}$$

 \hookrightarrow measured Fermi constant $G_F = G_F^{\mathcal{L}}(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})$

V_{ud} tension as a sign for the violation of lepton flavor universality?

- Let us parameterize the *W* couplings as $\mathcal{L} = -i \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} (\delta_{ij} + \varepsilon_{ij})$
- Modifies Fermi constant in muon decay

$$rac{1}{ au_{\mu}}=rac{(G_{F}^{\mathcal{L}})^{2}m_{\mu}^{5}}{192\pi^{3}}(1+\Delta q)(1+arepsilon_{ee}+arepsilon_{\mu\mu})^{2}$$

 \hookrightarrow measured Fermi constant $G_F = G_F^{\mathcal{L}}(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})$

• All β -decay observables affected according to

$$V_{ud}
ightarrow V_{ud}^eta = V_{ud}^{\mathcal{L}} ig(1 - arepsilon_{\mu\mu}ig)$$

where $V_{ij}^{\mathcal{L}}$ fulfill CKM unitarity

• Construct ratio Crivellin, MH 2020

$$R(V_{us}) \equiv \frac{V_{us}^{K_{\mu2}}}{V_{us}^{\beta}} \equiv \frac{V_{us}^{K_{\mu2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} = 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu} + \mathcal{O}(\varepsilon^2)$$

 \hookrightarrow LFUV effect enhanced by $(V_{ud}/V_{us})^2 \sim 20!$

V_{ud} tension as a sign for the violation of lepton flavor universality?

Observable	Measurement	$\text{Constraint} \times 10^3$
$rac{K ightarrow \pi \mu ar{ u}}{K ightarrow \pi e ar{ u}} \simeq 1 + arepsilon_{oldsymbol{\mu} \mu} - arepsilon_{oldsymbol{e} extsf{e}}$	1.0010(25)	1.0(2.5)
$rac{K ightarrow \mu u}{K ightarrow e u} \simeq 1 + arepsilon_{oldsymbol{\mu} oldsymbol{\mu}} - arepsilon_{ee}$	0.9978(18)	-2.2(1.8)
$rac{\pi ightarrow \mu u}{\pi ightarrow e u} \simeq 1 + arepsilon_{\mu \mu} - arepsilon_{ee}$	1.0010(9)	1.0(9)
$rac{ au o \mu u ar{ u}}{ au o e u ar{ u}} \simeq 1 + arepsilon_{\mu\mu} - arepsilon_{ee}$	1.0018(14)	1.8(1.4)
$rac{W ightarrow \mu ar{ u}}{W ightarrow e ar{ u}} \simeq 1 + arepsilon_{oldsymbol{\mu} oldsymbol{\mu}} - arepsilon_{oldsymbol{ee}}$	0.9960(100)	-4(10)
$\frac{B \to D^{(*)} \mu \nu}{B \to D^{(*)} e \nu} \simeq 1 + \varepsilon_{\mu \mu} - \varepsilon_{ee}$	0.9890(120)	-11(12)
$R(V_{us}) \simeq 1 - \left(rac{V_{ud}}{V_{us}} ight)^2 arepsilon_{\mu\mu}$	0.9891(33) (SGPR)	0.58(17)
	0.9927(39) (CMS)	0.39(21)

- Most stringent constraint on $\varepsilon_{\mu\mu}$ thanks to CKM enhancement
- Could explain tension between β decays and kaon decays, but not between K_{ℓ2} and K_{ℓ3} (right-handed currents?)
- Best constraint on $\varepsilon_{\mu\mu} \varepsilon_{ee}$ from

$$\mathbf{R}_{\mathbf{e}/\mu}^{\pi} = \frac{\Gamma(\pi \to \mathbf{e}\nu_{\mathbf{e}}(\gamma)}{\Gamma(\pi \to \mu\nu_{\mu}(\gamma))}$$

- Potential improvements for R(V_{us})
 - Radiative corrections for β decays
 - Improved measurements of *τ_n* and *g_A*
 - New data on K_{ℓ3} decays
 - \hookrightarrow assumed $\sqrt{2}$ due to neutron decay
- Potential improvements for $\varepsilon_{\mu\mu} \varepsilon_{ee}$
 - Factor 3 from PEN/PiENu
 - Factor 3 for τ decays from Belle II
 - \hookrightarrow would probe ε_{ee} below $\mathcal{O}(10^{-3})$

Crivellin, MH 2020