

MEG II Liquid Xenon Detector and Simulation

Sei Ban (ICEPP, U.Tokyo), for the MEG II collaboration 7th Oct. 2022, Rare Pion Decay Workshop at UC Santa Cruz

Outline

- MEG II : Liquid xenon detector and VUV-sensitive MPPC
- Simulation of the liquid xenon detector for PIONEER
 (Just plan)
- Operation and calibration of the liquid xenon detector
 Presented by Ayaka. M, the next speaker

MEG II : Liquid xenon detector

- MEG II experiment searching for charged lepton flavor violation : $\mu^+ \rightarrow e^+ + \gamma$
- Liquid xenon detector for gamma-ray measurement
 - VUV-sensitive MPPCs (x4092) on the inner face
 - VUV-PMTs (x668) on the other faces
- Measuring the energy, position and timing of gamma-rays
- Finer imaging by covering up the inner face tightly with VUV-sensitive MPPCs
 - Improve rejection power for pile up events

MEG II : Liquid xenon detector

VUV-sensitive MPPC

- VUV-Sensitive MPPC (SiPM) for inner face of the liquid xenon detector
 - Developed by Hamamatsu Photonics for MEG II experiment
- Can be operated
 - at liquid xenon temperature (~165 K)
 - in magnetic field
- Photon Detection Efficiency (PDE) > ~15% for VUV light (λ ~170 nm)
 - Evaluated by Lab. test
 - PDE is also monitored by alpha-ray source in the liquid xenon detector during operation

VUV-sensitive MPPC : Photon Detection Efficiency

- PDE decrease during beam time was observed

- The cause of PDE decrease is under investigate (radiation damages?)
- Averaged PDE : 8.4% \rightarrow 5.6% in 2021 run
- PDE recovery was attempted by annealing during beam off period
 - Annealing by Joule heating of MPPC itself
 - PDE value after the annealing : ~11.5% in average (still work in progress)
- Established long term operation scheme in high intensity beam

MPPC PDE vs Irradiation time

Simulation study for PIONEER

- Simulation study of the liquid xenon detector for PIONEER calorimeter
 - Response for detection of 69.3 MeV e⁺ from $\pi^+ \rightarrow e^+ + v$
 - To understand : Energy resolution, low energy tail (due to materials)
 - Mott scattering is considered
- Energy loss at the material budget of the liquid xenon detector itself : ~7 MeV
 - Explainable the position dependence of deposit energy (right bottom figure)

Simulation study for PIONEER : Introduce of NEST

- Introduce "Noble Element Simulation Technique (NEST)" to the simulation

- https://nest.physics.ucdavis.edu/
- Comprehensive, accurate, and precise simulation of liquid noble elements
- Investigate the detector response more precisely at low energy region
- First, we'll introduce NEST to our detector simulation
 - Compare with the current results

Simulation study for PIONEER : Cherenkov light

- Use Cherenkov light to reconstruct the angular information
 - can be used for background rejection
- Distinguish from scintillation light by "timing" and "event distribution"

	Scintillation	Cherenkov
Timing	Decay time of Xe	Promptly
Distribution	Isotropic	Directive

- We'll try to detect Cherenkov lights by
 - Simulation study
 - Data (charge exchange reaction of π^0)

From : https://arxiv.org/pdf/1812.05694.pdf

Summary

- MEG II experiment searches for charged lepton flavor violation : $\mu^{+} \rightarrow e^{+} \gamma$
 - Liquid xenon detector is used to detect gamma-ray
- VUV-sensitive MPPC (SiPM) was developed by Hamamatsu
 - Photon Detection Efficiency (PDE) for VUV > 15% (at manufactured)
 - PDE decrease during beam time was observed
 - PDE recovery process by annealing was conducted successfully
- Some simulation plan for PIONEER using the liquid xenon detector are shown
 - Introducing NEST physics list
 - Study for using Cherenkov light to reconstruct the angular information

11

Backup

PDE decrease during beam time in 2021

- Photon Detection Efficiency (PDE) of MPPCs was monitored using Alpha-ray
 - ²⁴¹Am source inside the liquid xenon detector, generating VUV-light
 - Mean PDE value decreased from ~8.5% to ~5.6%
 - Position dependences were observed : larger PDE decrease at the center
 - Radiation damage by beam may be an issue

Surface damage of MPPC

- Possible cause of PDE decrease
- Gamma-ray, VUV-light, neutron are incoming to the LXe detector in beam time
- Ionizing particle or VUV lights interact shallow position (Passivation layer) in MPPC and generate ions
 - The ions may recombine with electrons to vanish the seed of avalanche
- It should be reproduced in Lab. by irradiating ionizing particle or VUV
 - We tried to reproduce it to specify the cause of PDE decrease

- Radiation damage by VUV-light
 - Irradiation test of VUV-lights both at room temperature and LXe temperature
 - low temperature may enhance the accumulation of the stationary charge

Low temp

LowRef

Room temp

RoomRef

: 9% degradation with 4.6e+10 /mm²

- Radiation damage by VUV-light
 - Scintillation by alpha-ray in LXe was used as light source
 - Exact same wavelength and temperature with the LXe detector
 - HV for MPPC was applied during the irradiation
 - Expected decrease was relatively 2% (w/ 168h dose) but it was not observed

15

- Radiation damage by neutron
- Neutron irradiation by Tandem electrostatic accelerator at Kobe Univ. in 2015
 - In total, 5e+9 2e+12 n/cm² irradiation depending on the time and distance
 - No effect of irradiation was observed
 - 4 years gap exists between irradiation and evaluation
 - Annealing effect at room temperature cannot be ignored

- Radiation damage by gamma-ray
- Gamma-ray in total 4.1e+3 Gy was irradiated and the PDE was evaluated
 - No significant decrease was observed
 - 4 years gap exists between irradiation and evaluation
 - Annealing effect at room temperature cannot be ignored

- Radiation damage by gamma-ray was again evaluated using beta-ray source
 - equivalent effect in the charged particle aspect
 - Evaluation both at room T. and low T.
 - Equivalent amount of dose with MEG II 3-year run
 - PDE decreases were not observed

PDE recovery : Evaluation of the recovery

- PDE value before/after the annealing (Hot water and Joule)
- Calculated using alpha-ray data with liquid xenon filling (VUV-light)

