LXe calorimetry for PIONEER Open questions/Simulation and R&D plans

https://triumf.wd10.myworkdayjobs.com/en-US/careers-at-triumf-job-postings/job/TRIUMF--Vancouver-BC/Postdoctoral-Researcher---Particle-Physics---Rare-Decay-group-at-TRIUMF_JR100269

C. Malbrunot - TRIUMF

07th October 2022

- high density
- high light yield
- fast response
- transparent to its emission (long absorption length)
- highly homogeneous response
- emission in the VUV (~178nm)
 - \checkmark high energy resolution (<2% sigma at 70 MeV)
 - ✓ fast timing
 - ✓ homogeneous

how much is high and how can we deviate from those ideal properties and still achieve PIONEER's goals should be studied carefully...

Material Properties	Value & Unit	Conditions
Atomic Number	54	
Atomic Weight A	$131.29 \mathrm{~g/mole}$	
Boiling point T_b	$165.1~\mathrm{K}$	$1 \mathrm{atm}$
Melting point T_m	161.4 K	$1 \mathrm{atm}$
Density ρ_{liq}	$2.98 \mathrm{g/cm^3}$	$161.35~\mathrm{K}$
Volume ratio $ ho_{ m gas}/ ho_{ m liq}$	550	15 °C, 1 bar
Critical point T_c , P_c	289.7 K, 58.4 bar	
Triple point T_3 , P_3	161.3 K, 0.816 bar	
Radiation length X_0	$2.77~\mathrm{cm}$	in liquid
	$8.48 \mathrm{~g/cm^2}$	
Molière radius R_M	$5.6~\mathrm{cm}$	
Critical Energy	$10.4 { m ~MeV}$	
$-(\mathrm{d}E/\mathrm{d}x)_{\mathrm{mip}}$	$1.255~{ m MeV~cm^2/g}$	
Refractive index	$1.6 \div 1.72$	in liquid at 178 nm
Fano Factor	0.041	theoretical
	unknown	experimental
Energy/scint. photon $W_{\rm ph}$	$(23.7\pm2.4)~{ m eV}$	electrons
	$(19.6\pm2.0)~{ m eV}$	$lpha ext{-particles}$
Lifetime singlet τ_s	22 ns	
Lifetime triplet $ au_t$	$4.2 \mathrm{ns}$	
Recombination time τ_r	45 ns	dominant for e, γ
Peak emission wavelength $\lambda_{ m scint}$	178 nm	
Spectral width (FWHM)	$\sim 14 \text{ nm}$	
Scint. Absorption length $\lambda_{\rm abs}$	> 100 cm	
Rayleigh scattering length $\lambda_{ m R}$	$(29\pm2)~{ m cm}$	
Thermal neutron $\sigma_{\rm tot}$	(23.9 ± 1.2) barn	Natural compositio

^{*a*}Discrepancies are present among the measured values. Refractive index in [7] was determined at 180

from https://arxiv.org/pdf/physics/0401072.pdf

RARE PION DECAY WORKSHOP – Santa Cruz –

2

Let's take the price aside...

from Jianglai Liu slides

Advantage of Xe:

- it can be shared!
- -it could be leased!
- -it is reusable (if no leak)

un-favourable circumstances

Price cycle: "it will go down as new factories scale up their production to benefit from the high price"

Updates from plants?

✓ high energy resolution (<2% sigma at 70 MeV)

- important for the tail fraction
- observation of photonuclear events
- exotic searches (bump searches)

Energy resolution

Shinji's Ph.D thesis (Figure 9.15 https://meg.web.psi.ch/docs/theses/ ogawa_phd.pdf).

In our proposal: "The baseline energy resolution goal for PIONEER at 70 MeV is 1.5%"

C. Malbrunot - TRIUMF

07th October 2022

- Understand data/MC discrepancy
- Resolution not limited by intrinsic light yield
- Can the fluctuations of dE/dx within the EM "shower" cause changes in light output and worsening the energy resolution -> NEST
- Also includes fluctuations in the recombination

==> Compare MEG prototype data with MC with and without NEST

✓ high energy resolution (<2% sigma at 70 MeV)

- important for the tail fraction
- observation of photonuclear events
- exotic searches (bump searches)

✓ fast timing

- can cope with high rate
- better pile-up suppression (cf old muons etc) ~x5 improvement compared to PIENU NaI

 \checkmark high energy resolution (<2% sigma at 70 MeV)

- important for the tail fraction
- observation of photonuclear events
- exotic searches (bump searches)

 \checkmark fast timing

- can cope with high rate
- better pile-up suppression (cf old muons etc) ~x5 improvement compared to PIENU NaI
- ✓ homogeneous
 - PIENU experience

-... but potentially not great when dealing with high rate ! Especially high rates of things we don't want (old muons, beam particles etc..)

- "best of both worlds" : segment the liquid!

RARE PION DECAY WORKSHOP — Santa Cruz —

7

Physical Optical Segmentation

- 6 layers of PMTs inserted at -60, 0, and 60 degrees
 - PMTs are placed on all walls with maximum density to keep th homogeneity same in both segmented and non-segmented cases.
 - Resolution is estimated by using simple Qsum
- We can observe more pe in case of short λ_{abs}
 - λ_{abs}−1m: resolution 15.4%→11%
- We loose efficiency due to the dead volume occupied by inserted layers of PMTs in any case.
- In case of long λ_{abas} energy leakage in the PMT layers cause ٠ deterioration of resolution in addition to the efficiency loss.

λabs	non-segmented	segmented	Eff loss(relative)
Im	15.4%	9.7%	11%
5m	3.7%	3.7%	28%
Inf m	1.5%	2.0%	44%

Satoshi Mihara for the µ→ey collaboration, muegamma review at PSI, Jan 2003

Simulation studies done by MEG **PIONEER** :

- "shafts" separating portions of the volume
- Possible material: MgF2 coated aluminum sheets, others. Optical simulation / optical measurements and tests

Flight length distribution of scintillation light

Satoshi Mihara for the µ→ey collaboration, mucgamma review at PSI, Jan 2003

"Virtual" Segmentation

based on Cherenkov information?

- Cherenkov photons arrive earlier. Can serve as a trigger.

- They are directional. Could effectively define an area of interaction/ area of photodetectors to readout. How much would that affect the energy resolution?

to be studied in simulation and in a large prototype

Fig. 5. Distribution of arrival times for Cherenkov and scintillation light traveling a distance of 60 cm, obtained from simulated $0\nu\beta\beta$ interactions in LXe.

Nucl.Instrum.Meth.A 922 (2019) 76-83 <u>1812.05694</u> [physics.ins-det] (nEXO)

- \checkmark high energy resolution (<2% sigma at 70 MeV)
 - important for the tail fraction
 - observation of photonuclear events
 - exotic searches (bump searches)
- ✓ fast timing
 - can cope with high rate
 - better pile-up suppression (cf old muons etc) ~x5 improvement compared to PIENU NaI
- ✓ homogeneous

- PIENU experience

-... but potentially not great when dealing with high rate ! Especially high rates of things we don't want (old muons, beam particles etc..)

- "best of both worlds" : segment the liquid!

Scintillation wavelength in the **VUV**

- advantageous for the high transparency
- difficult for readout

Scintillation wavelength in the **VUV**

- advantageous for the high transparency
- difficult for readout

- VUV SiPM degradation observed by MEG in the MEG apparatus (not reproduced in other environments)
- Further tests can be done in a small LXe cryostat
 - high flux irradiation of MEG SiPM (VUV laser) immersed in LXe
 - tests of wls coated conventional SiPM
 - tests and comparison with VUV PMT

Overview of prototype and test facilities that could be used by PIONEER

1. small LXe cryostat facility at McGill University

07th October 2022

- TRIUMF built the holder assembly for SiPM : assembly ongoing
- 5 faces covered with 16 SiPM (2 kinds FBK and Hamamatsu)
- 6th face equipped with 1 inch PMT for
- Installation beginning of November. Data taking start ~mid- November

What we aim at doing in this cryostat:

- test PDE of different VUV photosensor options
- look for Cerenkov signal (with filter)
- test conventional SiPM coated with wavelength shifting material
- high flux irradiation of SiPM
- test of reflective/ anti-reflecting material, segmentation material. Benchmark optical simulations
- NEST 0-field benchmarking (low energy)
- Development and test of a small ppb purity monitor for LXe

- ...

Timeline: 2023 and 2024

2. MEG large prototype at PSI

~100L apparatus that can be available

Timeline? (where to get the Xenon from...)

C. Malbrunot - TRIUMF

07th October 2022

https://arxiv.org/pdf/physics/0407033.pdf

What could we do in such a cryostat:

In a positron beam (modification of entrance window)

- energy resolution studies (resolution versus angle, versus MC prediction etc) (include purity monitor)
- segmentation and reconstruction studies (pileup studies)
- resolution beamline (PiE1?)
- Study Cherenkov
- large scale photosensor tests in LXe

- ...

Could be used for a Run 0.5??

- lineshape measurements. Assess and benchmark G4 wrt photo nuclear event. Need high momentum

PIONEER GEOMETRY

Need to study with simulation (Josh already mentioned a lot of those - more from Patrick)

- Pacman versus open-ended geometry (importance of lineshape measurement at least to benchmark MC!)
- photosensor coverage
- pileup
- photonuclear
- segmentation
- Others :
- calibration/monitoring etc

