LXe Pileup

The Basic Idea

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

Simulation of Pileup in the Liquid Xenon Calorimeter

P. Schwendimann

University of Washington

7. October 2022 Rare Pion Decay Workshop

Overview

LXe Pileup

2

4

Simulating the Detector

3 LXe Calorimeter Event Reconstruction

Simulating the Detector

The Basic Idea

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

Pileup

Conclusion

The Goal

How to Reach our Goal

The Devil in the (de)Tail

Another known Devil: Muon Decay in Flight

Devils Piling Up

Keeping the Corrections under Control

From Pion Decay to Photon Detection

Track optical photons from creation to absorption. Register times of photo-multiplier hits for post-processing.

LXe Pileup

From Photon Counting to Electronic Signal

LXe Pileup

The Basic Idea

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

For each Photomultiplier

- Estimate the single photon response
- Consider Photon Detection Efficiency
- Convolve hit times with single photon response

A Possible Event

LXe Calorimeter Event Reconstruction

LXe Pileup

Pileup

Conclusion

Backup

Position reconstruction will be extremely hard

From Electronic Signal to Reconstructed Event

Reconstructed Spectrum

Reconstructed Spectrum

Reconstructed Spectrum

How many Events do your Analyser Eyes See?

Fit F	Res	ult	:					
1	t_0	=	0.1,	E_0	=	60	Me	V

2
$$t_1 = 140, E_1 = 7 \text{ MeV}$$

How many Events do your Analyser Eyes See?

1
$$t_0 = 0.1, E_0 = 60 \text{ MeV}$$

2 $t_1 = 140, E_1 = 7 \text{ MeV}$

Truth is

Nuclear Effects can result in neutron emission and delayed energy deposit.

Reassembling the partial deposits

What if there are really two events?

Distorting the Energy Spectrum

LXe Pileup

The Basic Idea

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

Unidentified Pileup

Reconstruct two particles with E_1 and E_2 as one with energy $E=E_1+E_2$

Contamination

About a quarter of the unidentified PU events end up with a reconstructed energy similar to a $\pi \rightarrow e\nu$ event.

Educated Guesses on Pileup

LXe Pileup

The Basic Idea

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

Reminders

• Beam Rate: $R_B = 3 \times 10^5 \pi/s$

• Pileup window: T = 10 ns

Geometrical Acceptance

- Fiducial Volume covers $\approx 3\pi$
- Calo Rate: $R_C = R_B \cdot \frac{3}{4} \approx 2.25 \times 10^5$

Poisson Statistics

$$p(n) = \frac{(R_C \cdot T)^n e^{-R_C \cdot T}}{n!}$$

Pileup Probability

- Trigger on first decay
- Chance for a second one

 $p_{PU} pprox R_C \cdot T pprox 2.25 imes 10^{-3}$

The Unadorned View

Selecting the Time Window

LXe Pileup

The Basic Idea

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion Backup

Reminder

 π^+ Lifetime: 26 ns μ^+ Lifetime: 2197 ns Expected Rate: $3 \times 10^5 \ \pi$ per second

Select 100 ns After π Arrival

- 98 % of π decay
- \bullet 7 % of PU events

 $\mathcal{O}(10)$ Suppression

Remaining Contamination

Two Kind of Reconstructed Calo Events

Two Kind of Reconstructed Calo Events

Two Kind of Reconstructed Calo Events

LXe Pileup

Pileup identification

LXe Pileup

Calo on its own

- Separate pulses with time separation larger than 10 ns
- $\pi
 ightarrow e
 u$ events with nuclear effects can look like two $\mu
 ightarrow e
 u
 u$ events piling up
- Separation fails for shorter time differences entirely. Two Michel events can fake a signal event.

Using Tracker Information

- Most of the time, pileup will come with two tracks
- $\pi \to e\nu(\gamma)$ events will typically come with one charged track.

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

Dealing With Bhabha-Events

Required going forward

LXe Pileup

The Basic Idea

Simulating

the Detector

Event Reconstruction

Pileup

Conclusion Backup

Event Identification

- Calo may not be able to separate Nuclear Effects from Pileup
- Require to know corrections to 10^{-4}
 - Sideband Fits
 - Suppression based on ATAR and Tracker input

Extensive Studies of Detector Performance Needed

Require estimates of

- detector responses as well as background noise
- reconstruction performance and identification efficiencies

The Simulation Challenge is a good point to start

LXe Pileup

$\mathsf{LYSO} + \mathsf{CsI} \; \mathsf{Hybrid}$

Shower mostly local with few escapes

LXe Pileup

LYSO Resolution

LXe Pileup

The Basic Idea

Simulating the Detector

LXe Calorimeter Event Reconstruction

Pileup

Conclusion

Backup

Performance								
ψ	Res.	Acc.						
20°	4.9%	3%						
30°	3.4 %	7 %						
45°	3.1 %	15%						
60°	2.9%	25 %						
180°	2.6 %	100%						

LXe Comparison

- Single Volume
- \bullet Resolution: 1.8 %