

TCAD Simulation of AC-LGAD

Mohammad Nizam,*

T. Shin, A. Seiden, B. Schumm, H. Sadrozinski, S. Mazza, J.Ott, E. Ryan, M. Wong, Y. Zhao (SCIPP, UCSC)

RARE PION DECAY WORKSHOP – UCSC

10/07/ 2022

10/7/2022 M. Nizam, SCIPP M. Nizam, SCIPP

Outline

➢ Motivation

➢2D Simulation in Silvaco Victory device

 \triangleright Comparison with the test beam data

➢3D Simulation in Synopsis Sentaurus

 \triangleright Effect of strip length

 \triangleright Gain Suppression study in Sentaurus

Motivation

❑Technology Computer Aided Design (TCAD) extensively used in semiconductor industry

❑The goal of TCAD simulation of LGADs is to reproduce the existing results from the test beam data and optimize various parameters (e.g., N+ sheet resistance, bulk thickness, pitch size, strip size etc) for the PIONEER to provide input to the production.

2D Simulation

AC-coupled Low Gain Avalanche Diode (AC-LGAD)

- \Box A variant of LGAD with an insulating layer between the read-out pads/strips and the N+ layer.
- \Box N+ layer is contacted only by a separate grounding electrode.
- \Box The signal on the metal pad/strip is a mirror image of the charges reaching the N+ layer.

Simulation Framework

❑ 2D Silvaco© Victorydevice

 \Box Impact Ionization = Grant (has a low-field, an intermediate-field, and a high-field region, there is no temperature dependence)

❑ Mobility Models:

- Conmob (the concentration dependent mobility model)
- Fldmob (the lateral electric field-dependent mobility model)
- \Box Recombination model = Shockley Read Hall Recombination model (SRH)
	- Method = Newton (Nonlinear solutions are obtained using the Newton method)
- ❑ Charge deposition (MIP) using singleeventupset method (80 e/h pairs per micron)

 \Box X-mesh size = 5 um

 \Box Y-mesh size= 0.01 um – 1.0 um

Simulated Device Parameters

Doping profiles (per cm^3): Gain Layer and the N+ layer (Bulk= 50um, metal = 80 um, Pitch = 200 um

Simulated signal pulses: Bulk=50 um, Metal=80 um, FBK doping profiles

Simulated signal pulses: Bulk=50 um, Metal=80 um, BNL doping profiles

Comparison with the test beam data

Simulation of 120um bulk sensor: N+ sheet resistance = $2k \Omega / \Box$

Bulk=120 um, Pitch=300 um, Metal=100 um, N++ 2k ohm

Sharing between the channels: 120 um bulk, N+ sheet resistance = 2k Ω/\square

3D Simulation $@$ Synopsis Sentaurus

--Taylor Shin

Effect of strip length on signal sharing between the neighbouring channels

Effect of strip length on signal sharing between the neighbouring channels

--Taylor Shin

Gain Suppression Study @ Synopsis Sentaurus™

--Yuzhan Zhao

Simulation Setup

For ion track injection, the following scans were simulated:

- Scan over different angles
- Complete horizontal track

Electric Field within the Gain Layer

- Since the gain, or avalanche mechanism, depends on the high electric field in the gain layer region, it would be interesting to study the E-field for various tracks.
- The following plot show the time snapshot of the E-field within the gain layer.
- The E-field decreases as more charges were put in, and the affected location is large for track at angle.
- In the case of horizontal track, the field is generally lower across the entire gain layer.
- NOTE: this process is dynamic, which is not covered in the single time snapshot.

--Yuzhan Zhao

Particle Injection with different energies and at different angles

- **One of the tunable parameters of the partcle track is the Linear energy transfer (LET)**
- For LET=1.28e-5 pC/um, which corresponds to generated \sim 80 eh/um
- The following plot shows for vertical track injection (0 degree), the gain is reduced as more **charge is injected.**
- The difference is more significant at high bias voltage.

3D simulation for localized charge

- \cdot Device size : 250 um x 250 um x 50 um
- . The change of E-field is much smaller for 3D case??

Summary

❑In 2D TCAD simulation, we have characterized effects of N+ resistivity, strip metal size a, pitch size and substrate thickness.

- \Box Sharing between the neighbouring channels depends on N+ resistivity, pitch size and the bulk thickness.
- ❑3D TCAD simulation gives more realistic results in terms of strip length, but we have benchmark it with the existing test beam results (by Taylor Shin)
- ❑It seems Sentaurus can simulate the gain suppression and the work is in progress (by Yuzhan Zhao)

IV characteristics

Sharing between the channels

120um bulk, N+ sheet resistance = 2k Ω/\square

Bulk=120um, Pitch=300um, Metal=100um

Bulk=120um, Pitch=200um, Metal=80um