Proposal of An Alternative Active Target Design based on PIN

Xin Qian

BNL

With fruitful discussions with Veljko Radeka, Sergio Rescia, Gabriele Giacomini, Vladimir Tishchenko, Chao Zhang and many others

Active Target (ATAR) Requirement for PIONEER

- Excellent position resolution (for π, μ, e) enabling pattern recognition capabilities to differentiate $\pi^+ \to e^+ \nu$ from $\pi^+ \to \mu^+ (e^+ \nu \nu) \nu$
 - 2x2x0.6 cm³ ATAR design with 200 um strip pitch and 120 um thickness demonstrated in simulation
- Excellent timing resolution for T₀ and two-hits separation
 - Capable of identifying $\pi \rightarrow \mu$ hits separated by 1.5 ns
 - Achieve a T_0 timing resolution that can handle 300 kHz rate (e) and rejecting beam background (for π ID)
- Excellent energy resolution
 - Separating the stopping π from stopping μ
 - Measuring energy of e

ATAR Design in PSI Proposal

Position resolution

- for π, μ, e ensured by the excellent S/N ratio from LGAD
- Timing resolution
 - T_0 and 2-hits separation ensured by excellent S/N ratio from LGAD
- Energy resolution
 - R&D is needed, given LGAD is firstly proposed as a fast-timing detector
 - 'Gain' may create complications in energy measurement (stability, uniformity, topology dependence)
- Additional challenges
 - Excellent S/N ratio → non-trivial requirement on the dynamic range of the electronics
 - Energy measurement → non-trivial requirement on the linearity of electronics

- 48 layers 1-side strip readout with 120 um thickness
- 100 strips with 200 um pitch covering 2x2 cm² area
- Sensors packed in stack of two with facing HV side and rotate 90°
- AC or TI LGAD to ensure excellent Signal-to-Noise (S/N) Ratio

An Improved Design with 2-sided Readout

- Inspired by previous experience in Liquid Argon Time Projection Chamber
 - → multiple projective 2D readouts enabling a 3D event reconstruction
 - For point-like energy deposition, same charge measurement in anode and cathode readout (Ramo theorem) → double # of hits for an improved energy and timing resolution, particularly beneficial for MIP electron
 - Expected to be beneficial to identify μ (-DIF) from the pion decay (~4 MeV, 750 um range)
 - Allow track reconstruction within 1 layer
 - For cathode readout, requiring capacitor (100 pF/up to 1 kV) to separate the bias voltage from readout (size ~ 2 mm x 1.2 mm integrating into the front-end board)

Alternative Design with a PIN Device

- Just like the Calorimeter (LXe vs. Crystal), it is desired to have an alternative design for the ATAR
 - Given the existing studies on simulations, a natural candidate for the alternative design is a PIN device
 - Compared to LGAD, PIN does not have the GAIN mechanism

Pros and Cons for PIN-based 120 um-thick ATAR

Pros

- PIN is known to be linear in energy response to energy deposition from 1 to 100 MIP
 - Excellent stopping π/μ separation
- With the charge collection signal, much easier to calibrate the energy response (uniform, stable and topology independent)
- A single 12-bit (4096) digitizer is sufficient to cover the entire dynamic range

Cons

- Need a working design of pre-amp electronics to achieve > 9:1 signal-to-noise ratio for MIP signal, which requires more power
 - With FAST, the S/N ~ 5:1 for MIP signal
 - Also have impact in timing resolution (to be elaborated in details)
- Additional considerations for the alternative design
 - Keep the current geometry, possible to expand to 3x3 cm² with more channels
 - Given stopping $\pi/\mu \sim 10-35$ MIP,
 - Good T0 timing resolution is expected
 - Handle 300 kHz rate (e) and rejecting beam background (for π ID)
 - Good 2-hits separation should be expected, but depending on electronics
 - π/μ separation for hits separated by 1.5 ns

Requirement of Electronics

- The (minimal) most probable value (MPV) charge for a MIP track in a 120-um thick Si is about 7800 electrons (1.25 fC)
 - To reach a 9:1 S/N ratio, the equivalent noise charge (ENC) should be smaller than 860 electrons
- 6 e- /pF@ 1 us shaping @ room temperature
 - "<u>Signal Processing for Particle Detectors</u>" Veljko Radeka
 - @ 10 pF, 5 ns shaping time gives us 850 electrons
 - At LXe temperature (~4 e/pF), ENC ~ 570
- ~ 5 mW/ch
- Better than 1% integrated linearity up to 100 MIP

200 um pitch, 100 um width	N-type strip (2 cm)	P-type strip (2 cm)	
Interstrip capacitance	0.1 fF/um → 4 pF	0.04 fF/um → 1.6 pF	
Back capacitance	0.08 fF/um → 3.2 pF	0.08 fF/um → 3.2 pF	
FLEX cable	50-60 pF/m	→ 2.5 – 3 pF	
Total	~ 10 pF	~ 8 pF	

Demonstration of the ATAR Performance with 5 ns Shaping

- Based on existing studies
 - Simulation: db-98
 - T0 timing resolution: db-104
 - Two-peak separation: db-106
 - Charge resolution: db-105
- Simulation:
 - Signal fluctuation + Random Electronics Noise
- Reconstruction assuming known electronics response function
 - Deconvolution with FFT
 - Compressed sensing with L1 regularization

Time Domain

Hypothetical electronics response with 5 ns shaping utilized the functional form of LAr^AASIC

Example of Simulated Waveform with Noise @ 2 GHz digitization

Simulated Waveform ž -200 -400 -600 5 15 20 25 30 10 0 Time (ns) 2-peak Separation π (47 MIP)-μ (9 MIP) @ 60-60 um + 1.5 ns)

2-peak Separation π (39 MIP)-μ (9 MIP) @ 90-30 um + 1.5 ns)

2-sided readout limits the ambiguities a single 3D point in the decay layer 12

Summary of Timing and Charge Resolution

	MIP hit	MIP track (50 hits assumed with 2- sided readout)	10xMIP hit	30xMIP hit
T0 resolution	408 ps	408/sqrt(50) = 58 ps	103 ps	74 ps
Charge resolution (1024 e in 7 ns)	<13.1%	13.1%/sqrt(50) = 1.9%	<1.31 %	<0.44%
2-peak separation@ 3D point of the decay layer	N/A	N/A	Good with 1.5 ns separation, when delayed hit charge is not too small	

PIONEER physics requirements satisfied!

120 um PIN device, a 5 ns shaping time preamplifier + S/N ~ 10:1

Discussions and R&D path

- Sensor and electronics design are related:
 - Thicker than 120 um ATAR PIN layer will allow for shorter (than 5 ns) shaping time
- Development of a new low-noise preamp electronics with shaping time ~ 5 ns
 - Can also be used for SiPM readout for PIONEER calorimeter
 - We may explore a readout scheme with E0, T0, and TOT instead of full digitization \rightarrow simplified readout chain with a big saving on electronics power
- Demonstration of 2-sided PIN/LGAD fabrication (BNL LDRD scope, see Volodya and Gabriele's talks)
- Engineering Design with proper cooling
 - Electronics Noise can be significantly reduced if using cold electronics (LXe temperature)

Summary

- We propose a 2-sided PIN-based ATAR for PIONEER
- With a 5-ns shaping time preamplifier, this alternative design enables
 - Excellent energy resolution (π/μ separation, electron energy)
 - Excellent timing resolution (<100 ps for stopping π/μ)
 - Excellent position resolution for precise 3D topology reconstruction (identify short muon even within one layer)
- R&D goals:
 - 2-sided 120 um PIN/LGAD fabrication (BNL LDRD)
 - Development of a new low-noise preamp electronics with a shaping time ~ 5 ns

Simulated Noise (ENC ~ 860 e-)

Simulated Noise

Noise Amplitude

T0 resolution

100x MIP

MIP

T0 resolution

10 MIP

30 MIP

Charge Resolution (7-ns window)

- MIP
 - 13.1%
- MIP track with 50 hits
 1.85%
- MIPx100
 - 0.13%

Readout Chip

┥ŀ

Readout

Chip