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Active Target (ATAR) Requirement for PIONEER

* Excellent position resolution (for i, 11, e) enabling pattern recognition
capabilities to differentiate t* - etv fromnt - ut(etvv)v

— 2x2x0.6 cm3 ATAR design with 200 um strip pitch and 120 um thickness
demonstrated in simulation

* Excellent timing resolution for T, and two-hits separation
— Capable of identifying m — u hits separated by 1.5 ns
— Achieve a T, timing resolution that can
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ATAR Design in PSI Proposal

Position resolution

— for m, u, e ensured by the excellent S/N ratio
from LGAD

Timing resolution
— T, and 2-hits separation ensured by excellent
S/N ratio from LGAD
Energy resolution

— R&D is needed, given LGAD is firstly proposed
as a fast-timing detector

— ‘Gain’ may create complications in energy
measurement (stability, uniformity, topology
dependence)

Additional challenges

— Excellent S/N ratio = non-trivial requirement
on the dynamic range of the electronics

— Energy measurement = non-trivial
requirement on the linearity of electronics

48 layers 1-side strip readout with 120 um
thickness

100 strips with 200 um pitch covering
2x2 cm? area

Sensors packed in stack of two with facing HV
side and rotate 90°

AC or TI LGAD to ensure excellent Signal-to-
Noise (S/N) Ratio



An Improved Design with 2-sided Readout

* Inspired by previous experience in Liquid Argon Time Projection Chamber
- multiple projective 2D readouts enabling a 3D event reconstruction

— For point-like energy deposition, same charge measurement in anode and cathode
readout (Ramo theorem) - double # of hits for an improved energy and timing
resolution, particularly beneficial for MIP electron

— Expected to be beneficial to identify u (-DIF) from the pion decay (~4 MeV, 750 um range)
* Allow track reconstruction within 1 layer

— For cathode readout, requiring capacitor (100 pF/up to 1 kV) to separate the bias voltage
from readout (size ~ 2 mm x 1.2 mm integrating into the front-end board)
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* W-Collection View =~ > See Chao Zhang’s talk
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Alternative Design with a PIN Device

 Just like the Calorimeter (LXe vs. Crystal), it is desired to have an
alternative design for the ATAR

— Given the existing studies on simulations, a natural candidate for the
alternative design is a PIN device

— Compared to LGAD, PIN does not have the GAIN mechanism
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Pros and Cons for PIN-based 120 um-thick ATAR

Pros Cons
* PIN is known to be linear in energy response

to energy deposition from 1 to 100 MIP

— Excellent stopping i/ separation

* Need a working design of pre-amp
electronics to achieve > 9:1 signal-to-noise
ratio for MIP signal, which requires more

* With the charge collection signal, much power
easier to calibrate the energy response _ With FAST, the /N ~ 5:1 for MIP signal
(uniform, stable and topology independent) — Also have impact in timing resolution (to be
* Asingle 12-bit (4096) digitizer is sufficient to elaborated in details)

cover the entire dynamic range

* Additional considerations for the alternative design
* Keep the current geometry, possible to expand to 3x3 cm? with more channels
* Given stopping r/u ~ 10-35 MIP,
* Good TO timing resolution is expected
* Handle 300 kHz rate (e) and rejecting beam background (for it ID)
* Good 2-hits separation should be expected, but depending on electronics
* 1t/U separation for hits separated by 1.5 ns



Requirement of Electronics

The (minimal) most probable value (MPV) charge for a MIP track in
a 120-um thick Si is about 7800 electrons (1.25 fC)

— To reach a 9:1 S/N ratio, the equivalent noise charge (ENC) should be
smaller than 860 electrons

6 e- /pF@ 1 us shaping @ room temperature

— "Signal Processing for Particle Detectors" Veljko Radeka ENC < C. - I

— @ 10 pF, 5 ns shaping time gives us 850 electrons L haping
— At LXe temperature (~4 e/pF), ENC ~ 570

5> mW/ch
BEtter tha N 1% Interstrip capacitance 0.1 fF/um - 4 pF 0.04 fF/um = 1.6 pF
integrated |inea r|ty Back capacitance 0.08 fF/um - 3.2 pF 0.08 fF/um - 3.2 pF
up to 100 MIP FLEX cable 50-60 pF/m = 2.5 — 3 pF

Total ~ 10 pF ~ 8 pF


https://www.evernote.com/shard/s369/sh/3b2e9782-4ae9-4b09-b661-3909494040c4/6bfdc4cece99fc9a207287ba42a1ec5b

Demonstration of the ATAR Performance with 5 ns Shaping

Time Domain

e Based on existing studies
— Simulation: db-98
— TO timing resolution: db-104
— Two-peak separation: db-106
— Charge resolution: db-105

e Simulation: _0'2; — FAST 4 pF
— Signal quctuation.+ | 03 — FAST 6 pF
Random Electronics Noise "~ — FAST 10 pF
* Reconstruction assuming known 04b [ TyPo- 518
electronics response function 0 5 10
— Deconvolution with FFT Time (ns)

Hypothetical electronics response with 5 ns

— Com pressed SENsing with L1 regu larization shaping utilized the functional form of LArASIC



Example of Simulated Waveform with Noise
@ 2 GHz digitization
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Summary of Timing and Charge Resolution

MIP track 10xMIP hit
(50 hits assumed with 2-
sided readout)

TO resolution 408 ps 408/sqgrt(50) = 58 ps 103 ps 74 ps
Charge resolution <13.1% 13.1%/sqrt(50) = 1.9% <1.31 % <0.44%
(1024 e in 7 ns)
2-peak separation N/A N/A Good with 1.5 ns separation,
@ 3D point of the when delayed hit charge is
decay layer not too small

PIONEER physics requirements satisfied!
120 um PIN device, a 5 ns shaping time preamplifier + S/N ~ 10:1

13



Discussions and R&D path

Sensor and electronics design are related:
— Thicker than 120 um ATAR PIN layer will allow for shorter (than 5 ns) shaping time

Development of a new low-noise preamp electronics with shaping time ~ 5 ns
— Can also be used for SiPM readout for PIONEER calorimeter

— We may explore a readout scheme with EO, TO, and TOT instead of full digitization =
simplified readout chain with a big saving on electronics power

Demonstration of 2-sided PIN/LGAD fabrication (BNL LDRD scope, see Volodya and
Gabriele’s talks)

Engineering Design with proper cooling
— Electronics Noise can be significantly reduced if using cold electronics (LXe temperature)



Summary
 We propose a 2-sided PIN-based ATAR for PIONEER

* With a 5-ns shaping time preamplifier, this alternative
design enables

— Excellent energy resolution (r/u separation, electron
energy)

— Excellent timing resolution (<100 ps for stopping t/u)

— Excellent position resolution for precise 3D topology
reconstruction (identify short muon even within one
layer)

 R&D goals:
— 2-sided 120 um PIN/LGAD fabrication (BNL LDRD)

— Development of a new low-noise preamp electronics
with a shaping time ~ 5 ns
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Time Domain

— FAST 4 pF
— FAST 6 pF
— FAST 10 pF
— Hype. 5ns
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Simulated Noise (ENC ~ 860 e-)
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10 MIP
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MIP
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Charge Resolution (7-ns window)
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