Event simulation and reconstruction in the active target

Vincent Wong TRIUMF

Rare Pion Decay Workshop, UC Santa Cruz Oct 7 2022

• In Phase I of PIONEER, one of the main goals is to measure the branching ratio $R_{e/\mu} = \frac{1}{\Gamma(\pi + 1.2 \times 10^{10})}$ at $\Gamma(\pi^+ \to e^+ \nu(\gamma))$ $\Gamma(\pi^+ \to \mu^+ \nu(\gamma))$

- the precision level of $\leq 0.01\%$
	- $\sqrt{20}$ -fold improvement in the precision of the g_e/g_μ test, compared to current best results from PEN, PIENU
	- ✓sensitive to BSM up to O(1000) TeV with coupling O(1), e.g. charged Higgs, leptoquarks…

PIONEER design to measure $\pi^+ \to e^+ \nu$:

- Pions decay at rest in an active stopping target (**ATAR**)
- Positrons are tracked in **ATAR** and Cylindrical Tracker, and its energy is measured in a calorimeter

PIONEER experiment

- Silicon active target (ATAR) with 4D tracking
	- reduce pileup effects and $\pi^+ \to e^+ \nu$ energy tail correction
	- directly identify $\pi^+ \to \mu^+ \to e^+$ "Michel" decay chain
- Calorimeter with high resolution and fast timing
	- improve $\pi^+ \to e^+ \nu$ energy tail suppression
- Fast electronics and $DAQ \Rightarrow$ improve efficiency
- The main systematic uncertainty for PIENU was the uncertainty in the tail correction for $\pi^+ \to e^+ \nu$ events below 52 MeV, where the suppression of "Michel" decay chain crucial

Tail fraction in low-energy spectrum

Principal challenge: Low energy "tail" of $\pi^+ \to e^+ \nu$ events (from *r*adiative decays) under $\pi^+ \rightarrow \mu^+ (\rightarrow e^+ \nu \bar{\nu}) \nu$ background

ATAR simulation

Baseline design of the ATAR:

- employs Low Gain Avalanche Detectors (LGAD)
- High granularity
	- consists of 48 layers of orthogonal X/Y Si strips
	- Strip size: *120 μm thick* x *200 μm wide* x *2 cm long*
	- 100 strips/layer

- 55 MeV/c π^+ with $\Delta p / p = 2\%$ (from PSI πE 5 beamline)
	- no degrader included upstream

Beamline setup:

Pion decay modes considered:

- π^+ decay at rest (DAR) $\rightarrow e^+$
- π^+ decay at rest (DAR) $\rightarrow \mu^+$ decay at rest (DAR) $\rightarrow e^+$
- π^+ decay in flight (DIF) $\rightarrow \mu^+$ decay at rest (DAR) $\rightarrow e^+$
- 7/10/2022 V. Wong Event simulation and reconstruction in the active target • π^+ decay in flight (DAR) $\rightarrow \mu^+$ decay at rest (DIF) $\rightarrow e^+$

7/10/2022 V. Wong - Event simulation and reconstruction in the active target

ATAR simulation

Event display:

Suppression of $\pi \rightarrow \mu \rightarrow e$ events

- at a level of O(107) or more → simple cut on energy deposit
- ATAR can provide excellent tracking information to suppress in-ATAR DIF π, which dominated the background suppressed spectrum in PIENU + BDT
- 7/10/2022 V. Wong Event simulation and reconstruction in the active target • DIF μ looks similar to DAR $\pi \rightarrow e$, except local dE/dx along the positron track \rightarrow simple cut on energy deposit in the closest five positron hits to the pion stopping vertex

• With good pulse pair resolution, the presence of 4.1 MeV allows DAR $\pi \rightarrow \mu \rightarrow e$ suppression factor

Suppression of in-ATAR DIF π

ATAR information, like stopping position, dE/dx and tracking topology.

- pion stopping plane position
- plane position with max E
- total energy deposit
- goodness of linear track fit in x- & y-orientation
- individual energy deposits in the last five planes before the pion stopping plane

Additionally, there's a suppression factor of: (i) ~50 by requiring $t_{e^+} \in [2, 32]$ ns, and (ii) \sim 1.5 by requiring central energy deposit > 75%

In order to optimize the suppression of in-ATAR DIF π, a gradient-boosted decision tree (BDT) is applied on

At a 10% energy resolution, "in-ATAR DIF π" has a misidentified rate of 0.35% when the "DAR $π → e"$

efficiency is 75%, resulting in a suppression factor of ~650.

suppression factor of O(40,000) in total

Suppression of DIF backgrounds

As a function of ATAR energy resolution:

• "in-ATAR DIF π" suppression deceases and levels off as energy resolution gets worse (as separation

- power from track fit is not affected)
-

• "DIF μ" suppression is not affected much, as a muon-like hit is distinctive enough from a positron-like hit

Dead material study was performed to investigate the effect of dead material between layers for supporting structure:

- Suppression is lower when Kapton is used instead of leaving an air gap in between layers.
- 25-micron of air gap does not affect the suppression very much.

7/10/2022 2002 V. Wong - Event simulation and reconstruction in the active target 9

Suppression of DIF backgrounds

10

Energy spectrum after $\pi \rightarrow \mu \rightarrow e$ suppression

11

Conclusions & Outlooks

- $\pi \rightarrow \mu \rightarrow e$ background is now dominated by "DIF μ " events.
- Charge sharing in the case of AC-LGAD
	- A more realistic detector response in the simulation to study the impact on DIF suppression
- Ways to further suppress "DIF μ" suppression
	- The 4.1 MeV muon travels up to 0.8mm before it decays into positron
	- Thinner layers to help with muon track reconstruction?
- Optimizing the suppression of DIF backgrounds
	-

• ATAR can provide strong suppression power on $\pi \to \mu \to e$, especially on the "in-ATAR DIF π " events. The

200µm pitch, Ch4 $2mm$ 2mm 2mm 120 um 120um 50um 400 600 800 1000 200 $\overline{0}$ Centered position $[\mu m]$

Using advanced deep learning models (e.g. CNN, PointNet) on low-level ATAR hit information directly