Event simulation and reconstruction in the active target

Vincent Wong TRIUMF

Rare Pion Decay Workshop, UC Santa Cruz Oct 7 2022

PIONEER experiment

- the precision level of $\leq 0.01\%$
 - PIENU
 - \checkmark sensitive to BSM up to O(1000) TeV with coupling O(1), e.g. charged Higgs, leptoquarks...

PIONEER design to measure $\pi^+ \rightarrow e^+ \nu$:

- Pions decay at rest in an active stopping target (ATAR)
- Positrons are tracked in ATAR and Cylindrical Tracker, and its energy is measured in a calorimeter

7/10/2022

V. Wong - Event simulation and reconstruction in the active target

• In Phase I of PIONEER, one of the main goals is to measure the branching ratio $R_{e/\mu} = \frac{\Gamma(\pi^+ \to e^+ \nu(\gamma))}{\Gamma(\pi^+ \to \mu^+ \nu(\gamma))}$ at the precision level of < 0.01%

 $\sqrt{20}$ -fold improvement in the precision of the g_e/g_μ test, compared to current best results from PEN,

Tail fraction in low-energy spectrum

Principal challenge: Low energy "tail" of $\pi^+ \rightarrow e^+ \nu$ events (from radiative decays) under $\pi^+ \rightarrow \mu^+ (\rightarrow e^+ \nu \bar{\nu}) \nu$ background

- Silicon active target (ATAR) with 4D tracking
 - reduce pileup effects and $\pi^+ \rightarrow e^+ \nu$ energy tail correction
 - directly identify $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ "Michel" decay chain lacksquare
- Calorimeter with high resolution and fast timing
 - improve $\pi^+ \rightarrow e^+ \nu$ energy tail suppression
- Fast electronics and $DAQ \Rightarrow$ improve efficiency
- The main systematic uncertainty for PIENU was the uncertainty in the tail correction for $\pi^+ \rightarrow e^+ \nu$ events 52 MeV, where the suppression of "Michel" decay ch crucial

PIENU 2	015 I	PION	EER	Estin
---------	-------	------	-----	-------

	Error Source	%	
below	Statistics	0.19	0.0
ain is	Tail Correction	0.12	→ <0.
	t_0 Correction	0.05	< 0.
	Muon DIF	0.05	0.0
	Parameter Fitting	0.05	< 0.
	Selection Cuts	0.04	< 0.
	Acceptance Correction	0.03	0.0
	Total Uncertainty	0.24	\leq 0.0

ATAR simulation

Baseline design of the ATAR:

- employs Low Gain Avalanche Detectors (LGAD)
- High granularity
 - consists of 48 layers of orthogonal X/Y Si strips
 - Strip size: 120 µm thick x 200 µm wide x 2 cm long
 - 100 strips/layer ullet

Beamline setup:

- 55 MeV/c π^+ with $\Delta p/p=2\%$ (from PSI $\pi E5$ beamline)
 - no degrader included upstream ullet

Pion decay modes considered:

- π^+ decay at rest (DAR) $\rightarrow e^+$
- π^+ decay at rest (DAR) $\rightarrow \mu^+$ decay at rest (DAR) $\rightarrow e^+$
- π^+ decay in flight (DIF) $\rightarrow \mu^+$ decay at rest (DAR) $\rightarrow e^+$
- π^+ decay in flight (DAR) $\rightarrow \mu^+$ decay at rest (DIF) $\rightarrow e^+$ 7/10/2022

ATAR simulation

Event display:

V. Wong - Event simulation and reconstruction in the active target

Suppression of $\pi \rightarrow \mu \rightarrow e$ events

	positron timing from pion hits	energy deposits	'pion' stopping plane	'pion' dE/dx	'pion' tracking	'positron' tra
DAR π → e	short	mostly in central volume and narrowly distributed	narrowly distributed	follows pion Bragg peak	straight track	positron-lił
DAR π → DAR μ → e	long	4.1 MeV higher from muon	similar	similar	similar	similar
in-ATAR DIF π → DAR μ → e	long	partially in central volume and widely distributed	widely distributed	follows muon Bragg peak	track with a kink	similar
$\begin{array}{c} \text{DAR } \pi \\ \rightarrow \text{DIF } \mu \rightarrow e \end{array}$	similar	similar	similar	similar	similar	muon-like

- lacksquareat a level of O(10⁷) or more \Rightarrow simple cut on energy deposit
- ATAR can provide excellent tracking information to suppress in-ATAR DIF π , which dominated the background suppressed spectrum in PIENU
- DIF μ looks similar to DAR $\pi \rightarrow e$, except local dE/dx along the positron track simple cut on energy deposit in the closest five positron hits to the pion stopping vertex 7/10/2022

With good pulse pair resolution, the presence of 4.1 MeV allows DAR $\pi \rightarrow \mu \rightarrow e$ suppression factor

Suppression of in-ATAR DIF π

ATAR information, like stopping position, dE/dx and tracking topology.

- pion stopping plane position
- plane position with max E
- total energy deposit
- goodness of linear track fit in x- & y-orientation
- individual energy deposits in the last five planes before the pion stopping plane

efficiency is 75%, resulting in a suppression factor of ~650.

Additionally, there's a suppression factor of: (i) ~50 by requiring $t_{\rho^+} \in [2, 32]$ ns, and (ii) ~1.5 by requiring central energy deposit > 75%

7/10/2022

In order to optimize the suppression of in-ATAR DIF π , a gradient-boosted decision tree (BDT) is applied on

At a 10% energy resolution, "in-ATAR DIF π " has a misidentified rate of 0.35% when the "DAR $\pi \rightarrow e$ "

suppression factor of O(40,000) in total

Suppression of DIF backgrounds

As a function of ATAR energy resolution:

- power from track fit is not affected)

"in-ATAR DIF π " suppression deceases and levels off as energy resolution gets worse (as separation)

"DIF µ" suppression is not affected much, as a muon-like hit is distinctive enough from a positron-like hit

Suppression of DIF backgrounds

Dead material study was performed to investigate the effect of dead material between layers for supporting structure:

- Suppression is lower when Kapton is used instead of leaving an air gap in between layers.
- 25-micron of air gap does not affect the suppression very much.

Energy spectrum after $\pi \rightarrow \mu \rightarrow e$ suppression

V. Wong - Event simulation and reconstruction in the active target

10

Conclusions & Outlooks

- $\pi \rightarrow \mu \rightarrow e$ background is now dominated by "DIF μ " events.
- Charge sharing in the case of AC-LGAD \bullet
 - A more realistic detector response in the simulation to study the impact on DIF suppression
- Ways to further suppress "DIF μ" suppression
 - The 4.1 MeV muon travels up to 0.8mm before it decays into positron
 - Thinner layers to help with muon track reconstruction?
- Optimizing the suppression of DIF backgrounds

7/10/2022

• ATAR can provide strong suppression power on $\pi \rightarrow \mu \rightarrow e$, especially on the "in-ATAR DIF π " events. The

200µm pitch, Ch4 2mm 2mm 2mm 120um 120um 50um 400 600 800 1000 200 0 Centered position [µm]

Using advanced deep learning models (e.g. CNN, PointNet) on low-level ATAR hit information directly

V. Wong - Event simulation and reconstruction in the active target

11