LGAD Sensors at FBK (selected topics)

A. Bisht, G. Borghi*, M. Boscardin, M. Centis Vignali¹, F. Ficorella, O. Hammad Ali, G. Paternoster Fondazione Bruno Kessler [∗] Now at Politecnico di Milano

> 08.10.2022 Rare Pion Decay Workshop

¹ mcentisvignali@fbk.eu

Fondazione Bruno Kessler

6 inch (150 mm) Custom CMOS-like process

(Standard) Low Gain Avalanche Diodes

- Silicon detectors with charge multiplication
- \bullet Gain ≈ 10
- **Gain layer provides high-field region**
- \bullet No-gain region \sim 30 $-$ 80 μ m
- \bullet Time resolution \sim 30 ps \leftrightarrow thin \sim 50 μ m sensor
- **Improve SNR of the system** (When the sensor shot noise is not dominating)
- Noise and power consumption ⇒ low gain

HADES Experiment

[\[R. Holzmann 54. Winter Meeting on Nuclear Physics\]](https://indico.mitp.uni-mainz.de/event/56/contributions/1870/)

- **•** Fixed target experiment at GSI
- TOF used for particle identification (among other methods)
- \bullet T₀ detector
	- Based on diamond detectors
	- Beam monitoring
	- TOF start
	- **Replace diamond with LGADs**

[\[J. Pietraszko et al. Eur. Phys. J. A 56 \(2020\) 183\]](https://doi.org/10.1140/epja/s10050-020-00186-w)

LGADs for HADES

- Strip geometries
- \bullet Sensor dimension up to \sim 2 \times 2 cm²
- Strip up to 0.387 \times 9.28 mm²
- Wafers thinned down to 200 μ m total
- Dicing after thinning

MIP time resolution (largest strips): [\[W. Krueger et al. NIMA 1039 \(2022\) 167046\]](https://doi.org/10.1016/j.nima.2022.167046)

- $\bullet \sim 85$ ps in full system tests
- ∼ 130 ps in the experiment (discrepancy under investigation)

Trench Isolated LGADs

- **•** Trenches substitute the isolation structures
- Trench width about 1 μ m \Rightarrow fill factor close to 100%

[\[G. Paternoster et al. IEEE EDL Vol 41 Issue 6 \(2020\) 884-887\]](https://doi.org/10.1109/LED.2020.2991351)

TI-LGADs RD50

- Second TI-LGAD run
- Project within the RD50 collaboration
- Several pixel and strip geometries
- Different gain structure layouts
- Variations in trench depth and fabrication process

M. Centis Vignali **M. Centis Vignali** CBAD sensors at FBK 08.10.2022 7

TI-LGAD RD50 Characterization

[\[A. Bisht Picosecond Workshop 2021\]](https://indico.cern.ch/event/861104/contributions/4514658/)

- **•** Stable trench structures
- **•** Breakdown due to gain layer
- **Interpad 3-10** μ **m with laser** [\[A. Bisht Picosecond Workshop 2021\]](https://indico.cern.ch/event/861104/contributions/4514658/)^[5]
- ∼ 10× improvement from STD LGAD
- Same radiation hardness and time resolution as Standard LGADS [\[M. Senger et al. NIMA 1039 \(2022\) 167030\]](https://doi.org/10.1016/j.nima.2022.167030)⁶⁷ (this batch was without carbon coimplantation)

AC Coupled LGADs (RSD)

- \bullet Continuous gain area in the active region \Rightarrow 100% fill factor
- Readout channels capacitively coupled and resistive layer to limit signal spreading
- No restrictions on channel dimension

[^{\[}M. Mandurrino et al. IEEE EDL Vol 40 Issue 11 \(2019\) 1780-1783\]](https://doi.org/10.1109/LED.2019.2943242)

RSD Productions RRHINO KECC RSD1 RSD2 30000000 ooooloioiaiaia innin 000 000 000 00 **iniainiainiaini**

- Several pixel and strip geometries
- Electrode geometries to exploit signal propagation
- Variations of resistive layer
- Variations of coupling dielectrics

RSD Characterization

- $\sim 6~\mu$ m resolution with 200 μ m pitch (laser) [\[F. Siviero et al. NIMA 1041 \(2022\) 167313\]](https://doi.org/10.1016/j.nima.2022.167313)^{[57} [\[S. Mazza 40th RD50 workshop 2022\]](https://indico.cern.ch/event/1157463/contributions/4922739/)^{[57}
- \bullet Time resolution \sim 44 ps with 200 μ m pitch (MIPs) [\[M. Tornago et al. 2020 IEEE NSS/MIC \(2020\) 1\]](https://doi.org/10.1109/NSS/MIC42677.2020.9507870)¹⁵⁷

DC-Coupled Resistive Silicon Detectors (DC-RSD)

- Continuous gain area in the active region \Rightarrow 100% fill factor
- Resistive charge division \bullet
- Resistors between readout pads to improve reconstruction

DC-RSD Reconstruction Improvement

First batch planned for end of the year

M. Centis Vignali **M. Centis Vignali LGAD** sensors at FBK **19.10.2022** 13

Plans for RSD (AC/DC) and TI-LGADs

2022

● DC-RSD

- first demonstrator for the technology
- fabrication tests and design ongoing
- TI-LGADs AIDA
	- **e** evolution from RD50 batch
	- larger devices, up to \sim 1 \times 1 cm²
	- carbon coimplantation
	- **o** design ongoing

2023

- TI-LGADs GSI,HEPHY,TU-Wien
	- HADES and medical applications
	- strip geometries, sensors up to \sim 2 \times 2 cm²
	- wafer thinning

Thank you for your attention

Backup Material

Double Sided (Inverted) LGADs

- Continuous gain area in the active region \Rightarrow 100% fill factor \bullet
- Double sided process \rightarrow active thickness is the wafer thickness \Rightarrow not optimal for timing \bullet
- Readout side is ohmic \bullet
- Readout side separated from LGAD side \Rightarrow no restrictions on channel dimensions

[\[G.F. Dalla Betta et al. NIM A 796 \(2015\) 154\]](https://doi.org/10.1016/j.nima.2015.03.039)

X-ray Detection

[\[Wikipedia CC BY-SA 2.0](https://commons.wikimedia.org/wiki/File:SynchrotronLight.jpg)¹⁵⁴]

Advantages of LGADs demonstrated in: [\[Andrae et al. J.Synchrotron Rad. 26 \(2019\)](https://doi.org/10.1107/S1600577519005393) 1226-1237^[6]

Development in collaboration with \overline{PSF}

Detection of soft X-rays: 250 eV - 2 keV

- K-edges of bio elements \rightarrow pharmaceuticals, cell imaging
- L-edges of 3d-transition metals \rightarrow magnets, superconductors, quantum materials ...

Use LGADs:

- **•** Gain to lower the detection limit of photon counting detectors
- **Gain to improve SNR of integrating detectors**
- Thin entrance window and gain structure must be developed

Double Sided LGADs for PSI

- Several pixel and strip geometries
- Thin entrance window
- \bullet Several gain structure designs \rightarrow make as thin as possible
- Thickness 275 μ m
- First results with x-rays at [TREDI next week](https://indico.cern.ch/event/1096847/contributions/4743726/)^{er}

M. Centis Vignali **M. Centis Vignali** CB.10.202.

Double Sided LGADs for PSI

- Several pixel and strip geometries
- Thin entrance window
- \bullet Several gain structure designs \rightarrow make as thin as possible
- Thickness 275 μ m
- First results with x-rays at [TREDI next week](https://indico.cern.ch/event/1096847/contributions/4743726/)^{er}

High Luminosity LHC

Application described in: [Daniel Spitzbart talk on Wednesday](https://indico.cern.ch/event/1044975/contributions/4663646/)[®] [Frank Filthaut talk on Wednesday](https://indico.cern.ch/event/1044975/contributions/4663668/)

Development within the UFSD projectioness

Use time coordinate to mitigate pile-up

- Track time resolution \approx 30 ps
- Radiation resistance to few 10¹⁵ n_{eq}/cm^2
- Hit time resolution at end of life \approx 50 ps

[\[M. Moll PoS Vertex2019 \(2020\) 027\]](https://doi.org/10.22323/1.373.0027)

- Acceptor removal:
	- $Si_i + B_s \rightarrow B_i$ $B_i + O_i \rightarrow B_i O_i$ (donor level)
- Carbon \Rightarrow Competing reaction: $Si_i + C_s \rightarrow C_i$ $C_i + O_i \rightarrow C_i O_i$ (neutral)

- **o** Initial B concentration
	- \rightarrow higher concentration favored
	- \rightarrow narrower B distribution
- Carbon coimplantation \rightarrow optimized dose found

Radiation Hardening of LGADs

Removal constant

[\[M. Ferrero TREDI2021\]](https://indico.cern.ch/event/983068/contributions/4223173/)

Acceptor Removal parametrization - neutrons

$$
N_B(\phi_{eq}) = N_B(0) \exp \{-c\phi_{eq}\}
$$

$$
c = c(N_B(0))
$$

[\[M. Moll PoS Vertex2019 \(2020\) 027\]](https://doi.org/10.22323/1.373.0027)^[3]

- Acceptor removal:
	- $Si_i + B_s \rightarrow B_i$ $B_i + O_i \rightarrow B_i O_i$ (donor level)
- Carbon \Rightarrow Competing reaction: $Si_i + C_s \rightarrow C_i$ $C_i + O_i \rightarrow C_i O_i$ (neutral)

- **•** Initial B concentration \rightarrow higher concentration favored \rightarrow narrower B distribution
- Carbon coimplantation \rightarrow optimized dose found

Radiation Hardening of LGADs

Gain layer position:

- \bullet "shallow" \rightarrow higher B concentration
- \bullet "deep" \rightarrow easier compensation of B loss by increasing bias

[M. Moll PoS Vertex2019 (2020) 0271

- Acceptor removal: $Si_i + B_s \rightarrow B_i$ $B_i + O_i \rightarrow B_i O_i$ (donor level)
- Carbon \Rightarrow Competing reaction: $Si_i + C_s \rightarrow C_i$ $C_i + O_i \rightarrow C_i O_i$ (neutral)

- **o** Initial B concentration
	- \rightarrow higher concentration favored
	- \rightarrow narrower B distribution
- Carbon coimplantation \rightarrow optimized dose found

- Time resolution < 40 ps for 2.5 · 10¹⁵ n*eq*cm[−]²
- Time resolution < 50 ps for 3 · 10¹⁵ n*eq*cm[−]²

Demonstrated radiation resistance and time resolution for HL-LHC

M. Centis Vignali Call 2022 Call 2022 [LGAD sensors at FBK](#page-0-0) 08.10.2022 CALL 2022 CALL 2022 CALL 2022

Radiation Hardness Results

 100

 α

- Time resolution < 40 ps for 2.5 · 10¹⁵ n*eq*cm[−]²
- Time resolution < 50 ps for 3 · 10¹⁵ n*eq*cm[−]²

Demonstrated radiation resistance and time resolution for HL-LHC

M. Centis Vignali **M. Centis Vignali** CBAD sensors at FBK 08.10.2022 7

UFSD4

- Both "shallow" and "deep" gain layers
- Different pad layouts
- \bullet Sensors up to \sim 2 \times 2 cm²

Wafers and sensors for qualification for ATLAS and CMS timing detectors

Segmentation: Fill Factor

Focused 20 keV x-ray beam

- Measured FF: $\approx 40\%$
- Impact on detection efficiency

Signal vs position for 3 strips

[M. Andrae, J. Zhang, et al. J. Synchrotron Rad. (2019)]

Interpad Distance TI-LGADs

Inter Pixel Distance (µm)

 $($ arb. $)$

 $\frac{\mathsf{Q}_{\mathsf{left\}\operatorname{P}\!\mathrm{local}}^{\mathsf{+Q}_{\mathsf{Right}\,\operatorname{Pl}}} }{\mathsf{Q}_{\max}}$

 $1.5¹$

 0.5

 15

امە

Norm. Charge (arb.) Inter-Pixel Distance = 3.28 ± 1.05 um α $\frac{1}{100}$ $\frac{1}{200}$ $\frac{1}{300}$ \overline{a} Scanning Distance [um] Norm. Charge (arb.) TILGAD WISE C1-V1-1TR Inter-Pixel Distance \vert_{m} = -2.84 \pm 1.04 μ m 0.5 100 200 300 Scanning Distance [µm]

TILGAD W11L C1-V1-1TR

Low Energy X-ray Detection

Photon counting strip detectors, fluorescence X-rays

Improvement in detection threshold

[A. Bergamaschi TREDI2019] [M. Andrae, J. Zhang, et al. J. Synchrotron Rad. (2019)]