LGAD Sensors at FBK (selected topics)

A. Bisht, G. Borghi^{*}, M. Boscardin, <u>M. Centis Vignali</u>¹, F. Ficorella, O. Hammad Ali, G. Paternoster Fondazione Bruno Kessler * Now at Politecnico di Milano

> 08.10.2022 Rare Pion Decay Workshop

¹mcentisvignali@fbk.eu

Fondazione Bruno Kessler

6 inch (150 mm) Custom CMOS-like process

 GAD technologies: Standard Double sided AC coupled (RSD) Trench isolated 	2015	UFSD1
	2017	UFSD2
	2018	UFSD3
	2019	RSD1
		HD0
		UFSD3.2
• DC-RSD	2020	MOVEIT
		TI-LGAD RD50
		PSI iLGAD
		HADES
	2021	RSD2
		UFSD4
		Space LGADs
	2022	ExFlu
		DC-RSD (planned)
		TI-LGAD AIDA (planned)

Start

Batch

M. Centis Vignali

(Standard) Low Gain Avalanche Diodes

- Silicon detectors with charge multiplication
- Gain \approx 10
- Gain layer provides high-field region
- No-gain region \sim 30 80 μ m
- Time resolution \sim 30 ps \leftrightarrow thin \sim 50 μ m sensor

- Improve SNR of the system (When the sensor shot noise is not dominating)
- Noise and power consumption ⇒ low gain

HADES Experiment

[R. Holzmann 54. Winter Meeting on Nuclear Physics]

- Fixed target experiment at GSI
- TOF used for particle identification (among other methods)
- T₀ detector
 - Based on diamond detectors
 - Beam monitoring
 - TOF start
 - Replace diamond with LGADs

[J. Pietraszko et al. Eur. Phys. J. A 56 (2020) 183]

LGADs for HADES

- Strip geometries
- $\bullet\,$ Sensor dimension up to \sim 2 \times 2 cm^2
- $\bullet~Strip~up$ to 0.387 $\times~9.28~mm^2$
- Wafers thinned down to 200 $\mu \rm m$ total
- Dicing after thinning

MIP time resolution (largest strips): [W. Krueger et al. NIMA 1039 (2022) 167046]

- ullet \sim 85 ps in full system tests
- \sim 130 ps in the experiment (discrepancy under investigation)

Trench Isolated LGADs

- Trenches substitute the isolation structures
- Trench width about 1 $\mu {\rm m} \Rightarrow$ fill factor close to 100%

[G. Paternoster et al. IEEE EDL Vol 41 Issue 6 (2020) 884-887]

TI-LGADs RD50

- Second TI-LGAD run
- Project within the RD50 collaboration
- Several pixel and strip geometries
- Different gain structure layouts
- Variations in trench depth and fabrication process

TI-LGAD RD50 Characterization

[A. Bisht Picosecond Workshop 2021]

- Stable trench structures
- Breakdown due to gain layer
- Interpad 3-10 μm with laser [A. Bisht Picosecond Workshop 2021]
- $\bullet\,\sim\,10\times$ improvement from STD LGAD
- Same radiation hardness and time resolution as standard LGADs [M. Senger et al. NIMA 1039 (2022) 167030]⁴⁷ (this batch was without carbon coimplantation)

AC Coupled LGADs (RSD)

- Continuous gain area in the active region \Rightarrow 100% fill factor
- Readout channels capacitively coupled and resistive layer to limit signal spreading
- No restrictions on channel dimension

RSD Productions BRUNO KECCI E RSD1 RSD2

- Several pixel and strip geometries
- Electrode geometries to exploit signal propagation
- Variations of resistive layer
- Variations of coupling dielectrics

FONDAZIONE BRUNO KESSLER

RSD Characterization

- $\sim 6~\mu m$ resolution with 200 μm pitch (laser) [F. Siviero et al. NIMA 1041 (2022) 167313]^d [S. Mazza 40th RD50 workshop 2022]^d
- Time resolution \sim 44 ps with 200 μ m pitch (MIPs) [M. Tornago et al. 2020 IEEE NSS/MIC (2020) 1] eP

DC-Coupled Resistive Silicon Detectors (DC-RSD)

- $\bullet\,$ Continuous gain area in the active region \Rightarrow 100% fill factor
- Resistive charge division
- Resistors between readout pads to improve reconstruction

DC-RSD Reconstruction Improvement

First batch planned for end of the year

Plans for RSD (AC/DC) and TI-LGADs

2022

DC-RSD

- first demonstrator for the technology
- fabrication tests and design ongoing
- TI-LGADs AIDA
 - evolution from RD50 batch
 - larger devices, up to \sim 1 \times 1 cm^2
 - carbon coimplantation
 - design ongoing

2023

- TI-LGADs GSI, HEPHY, TU-Wien
 - HADES and medical applications
 - strip geometries, sensors up to \sim 2 \times 2 cm^2
 - wafer thinning

Thank you for your attention

M. Centis Vignali

Backup Material

Double Sided (Inverted) LGADs

- Continuous gain area in the active region \Rightarrow 100% fill factor
- Double sided process \rightarrow active thickness is the wafer thickness \Rightarrow not optimal for timing
- Readout side is ohmic
- Readout side separated from LGAD side \Rightarrow no restrictions on channel dimensions

[G.F. Dalla Betta et al. NIM A 796 (2015) 154]

X-ray Detection

[Wikipedia CC BY-SA 2.0⁴⁷]

Advantages of LGADs demonstrated in: [Andrae et al. J.Synchrotron Rad. 26 (2019) 1226-1237]⁶⁹

Detection of soft X-rays: 250 eV - 2 keV

- K-edges of bio elements
 → pharmaceuticals, cell imaging
- L-edges of 3d-transition metals
 → magnets, superconductors, quantum materials ...

Use LGADs:

- Gain to lower the detection limit of photon counting detectors
- Gain to improve SNR of integrating detectors
- Thin entrance window and gain structure must be developed

Double Sided LGADs for PSI

- Several pixel and strip geometries
- Thin entrance window
- $\bullet\,$ Several gain structure designs \to make as thin as possible
- Thickness 275 μm
- First results with x-rays at TREDI next week^d

Double Sided LGADs for PSI

- Several pixel and strip geometries
- Thin entrance window
- Several gain structure designs \rightarrow make as thin as possible
- Thickness 275 μm
- First results with x-rays at TREDI next week^d

High Luminosity LHC

Application described in: Daniel Spitzbart talk on Wednesday[®] Frank Filthaut talk on Wednesday[®] Development within the UFSD project

Use time coordinate to mitigate pile-up

- Track time resolution pprox 30 ps
- Radiation resistance to few 10¹⁵ n_{eq}/cm²
- $\bullet\,$ Hit time resolution at end of life $\approx 50\ ps$

Gain layer doping [M. Ferrero TREDI2021] 1 0.9 0.8 0.7 Fraction of active gain 0.6 0.5 0.4 B LD - No C (W1 UESD3) B I D + 1C (W5 UESD3) 0.3 B LD - 0.4C (W4 UFSD3.2) B LD - 0.8C (W3 UFSD3.2) 0.2 × B LD + 2C (W7 UFSD3) + B LD + 3C (W9 UESD3) 0.1 * B I D + 5C (W11 UESD3) 0 1.E+13 1.E+14 1.E+15 1.E+16 Fluence [n__/cm²] $N_B(\phi_{eq}) = N_B(0) \exp\{-c\phi_{eq}\}$ $c = c(N_B(0))$

Radiation Hardening of LGADs

[M. Moll PoS Vertex2019 (2020) 027]

- Acceptor removal:
 - $Si_i + B_s
 ightarrow B_i \ B_i + O_i
 ightarrow B_iO_i$ (donor level)
- Carbon \Rightarrow Competing reaction: $Si_i + C_s \rightarrow C_i$ $C_i + O_i \rightarrow C_iO_i$ (neutral)

- Initial B concentration
 - \rightarrow higher concentration favored
 - \rightarrow narrower B distribution
- Carbon coimplantation
 → optimized dose found

FONDAZIONE BRUNO KESSLER

Radiation Hardening of LGADs

Removal constant

IM. Ferrero TREDI20211

Acceptor Removal parametrization - neutrons

Initial acceptor density [cm^-3]

$$egin{aligned} & N_B(\phi_{eq}) = N_B(0) \exp\left\{-c\phi_{eq}
ight\} \ & c = c(N_B(0)) \end{aligned}$$

[M. Moll PoS Vertex2019 (2020) 027]

- Acceptor removal:
 - $Si_i + B_s
 ightarrow B_i \ B_i + O_i
 ightarrow B_iO_i$ (donor level)
- Carbon \Rightarrow Competing reaction: $Si_i + C_s \rightarrow C_i$ $C_i + O_i \rightarrow C_iO_i$ (neutral)

- Initial B concentration
 → higher concentration favored
 → narrower B distribution
- Carbon coimplantation
 → optimized dose found

Radiation Hardening of LGADs

Gain layer position:

- "shallow" \rightarrow higher B concentration
- $\bullet~$ "deep" \rightarrow easier compensation of B loss by increasing bias

[M. Moll PoS Vertex2019 (2020) 027]

- Acceptor removal: $Si_i + B_s \rightarrow B_i$ $B_i + O_i \rightarrow B_iO_i$ (donor level)
- Carbon \Rightarrow Competing reaction: $Si_i + C_s \rightarrow C_i$ $C_i + O_i \rightarrow C_iO_i$ (neutral)

- Initial B concentration
 - \rightarrow higher concentration favored
 - \rightarrow narrower B distribution
- Carbon coimplantation
 → optimized dose found

Radiation Hardness Results [M. Ferrero Vertex2021] Time resolution vs Bias [R. Arcidiacono et al. NIMA 978 (2020) 1643751 Time resolution for UFSD FBK sensors in the bias-gain plane 60 2 5e15 30-35 ns 40.0 5 35-40 ps 50 35.0 [bs] 40-45 ps 4 45-50 ns 30.0 resolution 50-60 ns 40 25.0 Expon. (EBK UESD3 W5 8E14 -30C) 35 12 20 0 on. (FBK UFSD3 W5 1.5E15 -30C 30 Expon. (FBK UFSD3 W5 3E15 -30C) 15.0 Expon. (FBK UFSF3 W5 -30C) ↔ W10 10.0

- Time resolution < 40 ps for $2.5 \cdot 10^{15} n_{eq} \text{cm}^{-2}$
- Time resolution < 50 ps for $3 \cdot 10^{15} n_{eq} cm^{-2}$

Demonstrated radiation resistance and time resolution for HL-LHC

M. Centis Vignali

5.0

0.0

Radiation Hardness Results

[A. Howard 37th RD50 Workshool

Voltage[V]

100 → W19 2.5E15 [R. Arcidiacono et al. NIMA 978 (2020) 1643751 90 ---W19 1.5E15 30-35 ns 80 40.0 35-40 ps -+-W19 0.8E15 35.0 70 40-45 ps Time Resolution [ps] 45-50 ns → W19 0e15 30.0 60 50-60 ns 25.0 Expon. (EBK UESD3 W5 8E14 -30C) 50 -E 20.0 Expon. (FBK UFSD3 W5 1.5E15 -30C 40 Expon. (FBK UFSD3 W5 3E15 -30C) 15.0 Expon (EBK LIESER W/S -300 30 -Expon (EBK LIESE2 W6 -200 10.0 Expon. (FBK UFSF2 W6 8E14 -20C) 20 5.0 - Expon. (FBK UFSF2 W6 1.5E15 -20C) Expon. (FBK UFSF2 W8 -20C 10 0.0 Bias [V] 0 0 100 200 300 400 500 600

- Time resolution < 40 ps for $2.5 \cdot 10^{15} n_{eq} cm^{-2}$
- Time resolution < 50 ps for $3 \cdot 10^{15} n_{eq} cm^{-2}$

Demonstrated radiation resistance and time resolution for HL-LHC

M. Centis Vignali

UFSD4

ATLAS

- Both "shallow" and "deep" gain layers
- Different pad layouts
- Sensors up to \sim 2 \times 2 cm²

Wafers and sensors for gualification for ATLAS and CMS timing detectors

Segmentation: Fill Factor

Focused 20 keV x-ray beam

- Measured FF: \approx 40%
- Impact on detection efficiency

Signal vs position for 3 strips

[M. Andrae, J. Zhang, et al. J. Synchrotron Rad. (2019)]

Interpad Distance TI-LGADs

Inter Pixel Distance (µm)

(arb.)

Pixel+Q_{Rig}

đ

1.5

0.5

15

10

Low Energy X-ray Detection

Improvement in detection threshold

[A. Bergamaschi TREDI2019] [M. Andrae, J. Zhang, et al. J. Synchrotron Rad. (2019)]