

1

MEG II LXe calibration and resolution

Ayaka Matsushita The University of Tokyo

Outline

Calibration

Sensor Calibration

Gain calibration / PDE calibration

Energy Calibration CW / NG

Resolution

CEX run

Timing / Energy Resolution

List of Calibration

Various parameters, such as gain and PDE, are required to reconstruct events in LXe detector. Parameters fluctuate over time.

Calibration is necessary to continue physics data taking with sufficient energy resolution.

Long calibration (3 days/week) : ~120 min Short calibration (4 days/week) : ~50 min

PMT Gain (Strong LED Run)

It is known from experience in MEG that PMT gain decreases. LEDs are installed inside detector for gain calibration. Calculate charge of each sensor at different LED intensities. Long calibration (22 different intensities) 3days/week Short calibration (4 different intensities) 4days/week

PMT gain can be calculated from the following equation.

 $\sigma_q^2 = Ge\overline{q} + \sigma_0^2$

(σ_q :spread of charge distribution, G:gain, e:elementary charge, \bar{q} :average charge)

Position of LEDs installed inside detector

Charge distribution of PM4754 for a given LED intensity

PMT Gain History in 2022 Beam Time

Gain Shift (BB Open/Close Run)

A beam blocker (BB) is installed upstream of the beam. Beam is blocked by inserting BB into the beamline.

PMT gain fluctuates over a short period when BB opens or closes. Energy scale can be modified due to gain shift. It is necessary to correct gain shift to use the data just after BB is opened.

BB is placed on upstream side.

6

LEDs inside the detector are illuminated to monitor the fluctuation of the charge of each sensor when BB is opened or closed.

MPPC PDE / PMT QE

It was found in pre-engineering run that PDE decreases during beam time due to radiation damage.

 $(7.7 % \rightarrow 5.6 % \text{in } 2021)$

PDE of at least a few percent is required for DAQ for sufficient sensitivity.

 \rightarrow Beam rate and beam time are limited by PDE.

 241 Am sources are installed inside the detector for PDE calibration.

PDE can be calculated from the number of photoelectrons using alpha-rays from 241 Am.

 $PDE_{\text{data}} = PDE_{\text{MC}} \times \frac{N_{\text{data}}}{N_{\text{MSE}}}$ $N_{\rm MC}$ $\times LY$

 N_{data} , N_{MC} : the number of photoelectrons in data or MC LY : Light yield

Assume PMT QE does not change.

 \rightarrow Measured apparent QE fluctuation is due to LY.

7

MPPC PDE / PMT QE

PDE

PDE Map

PDE history all MPPC (after LY correction)

PDE history of 2022 physics run

PDE is monotonically decreasing after the start of DAQ.

(PDE before LY correction is unstable due to the large fluctuation of LY this year.)

PDE decrease speed 0.00026 /day

PDE was recovered to 17.7% after annealing. (It is high enough to do DAQ this year.)

8

Energy Uniformity and Stability (CW run)

Energy scale and uniformity is monitored using a Cockcroft-Walton accelerator. Accelerate protons onto a $Li₂B₄O₇$ target. (μ -target is removed in CW run.) Gamma-rays of 17.6 MeV from ${}^{7}_{3}\text{Li}(p, \gamma){}^{8}_{4}\text{Be}$ are used for energy scale monitoring.

Energy uniformity is kept by correcting trigger weight using the result of CW runs.

Offline energy resolution is 3.67%.

Online energy resolution at 4% also achieved.

Energy scale is stable due to periodic trigger weight and scale factor updates.

Energy Uniformity and Stability (NG run)

Energy scale can be monitored also using a neutron generator (NG).

Gamma-rays of 9.0 MeV from capture of thermal neutrons in nickel 58 Ni(n, γ) 59 Ni This method can be used even with muon beam on.

CEX Run

CEX run is used for the evaluation of timing and energy resolution of LXe detector.

Charge EXchange reaction (CEX) $\pi^- p \to \pi^0 n$ $\pi^0 \rightarrow \gamma \gamma$ π^- is injected into a liquid hydrogen target. Back-to-back γ -rays : 54.9 MeV and 82.9 MeV Close to the energy of the signal event (52.8 MeV).

Timing measurement

gamma-ray hit timing on pre-shower counter + LXe detector

Energy measurement

Energy in BGO crystal + LXe detector

Move BGO and scan the inner face of the detector.

pre-shower counter

Timing Resolution

$$
\sigma_{\text{LXe}} = \sigma (T_{\text{xec}} - T_{\text{ps}} - T_{\text{TOF}}) \ominus \sigma_{\text{ps}} \ominus \sigma_{\text{vertex}}
$$

A reference counter was installed in front of LXe detector to measure σ_{vertex} .

Evaluate σ_{vertex} using the timing difference between pre-shower and reference counters.

$$
\sigma_{\text{vertex}} = \sigma (T_{\text{ps}} - T_{\text{ref}} - T_{\text{TOF}}) \ominus \sigma_{\text{ps}} \ominus \sigma_{\text{ref}}
$$

Energy Resolution

Energy resolution can be measured by CEX run.

$$
\sigma_E = \sqrt{\sigma_{core}^2 - \sigma_{true}^2}
$$

Gamma-ray spectrum is fitted with exponential gaussian function.

 σ_E : Energy resolution of LXe detector σ_{core} : Energy spread from fit result σ_{true} : Spread of true energy deposit (= 0.4%)

> σ_F (w < 2 cm) : 2.0 % σ_F (w > 2 cm) : 1.7 %

Summary

- Calibration of the sensor and energy scale is necessary for the stable operation of LXe detector. PMT gain is measured by LEDs of some intensities, and HV is adjusted monthly. MPPC PDE is measured using alpha-ray and it is affected by LY. Energy uniformity and stability is monitored by CW run and NG run.
- Timing resolution and energy resolution are evaluated in CEX run.

Timing resolution

Timing resolution is measured by the time difference between pre-shower counter and LXe detector. Timing resolution of LXe detector is 60.7 ± 6.0 ps.

Energy resolution

- Energy resolution is measured from the spread of gamma-ray spectrum from CEX reaction
- and the spread of true energy deposit.
- Energy resolution of LXe detector is 2.0 %($w < 2$ cm) / 1.7 %($w > 2$ cm).

Backup

Noise Reduction (Pedestal Run)

Before applying noise reduction

After applying noise reduction

Make noise template from pedestal data.

Charge of each sensor is calculated by integrating the waveform. Charge calculation is affected if pedestal is displaced due to noise.

LY History

Assume PMT QE does not change. \rightarrow Measured apparent QE variation is due to LY.

It was concluded that LY had recovered fully on 12th Jul. and LXe purification was finished.

LY has been rising since the end of Jul.

LY at the end of the last year's beamtime was 14.8%.

LY may continue to rise.

Impact of absorption need to be investigated.

PDE (Before/After LY Correction)

PDE history all MPPC (before LY correstion)

PDE measurements are affected by LY. Apparent measured PDE increases when LY increases.

Some data in commissioning period are not well fitted due to noise caused by liquid purification pump.

PDE after LY correction is decreasing.

Estimated PDE Map

at the end of physics data taking with 3e7 beam at the end of physics data taking with 4e7 beam

at the end of physics data taking with 5e7 beam PDE decrease speed

Level of LXe

LXe may not have reached the top of the detector in the last year's run. LXe level in last year : 83 cm

Low LXe level may cause non-uniformity in light collection efficiency.

Xenon was added to raise the liquid level, and LXe level rose.

Top part of the detector (a PMT row) is not filled with LXe.

LXe level in this year : 89 cm

 \rightarrow Symmetry of energy response is expected to improve.

small apparent QE

Energy Uniformity and Stability

 5 10 15 20 25 Energy [MeV] −**60** −**40** −**20 u [mm]** Before weight correction

After weight correction

Calculation of σ_{vertex}

A reference counter was installed in front of LXe detector to measure σ_{vertex} . The timing resolution of each counter is known. (\sim 40 ps in a lab test) Evaluate σ_{vertex} using the hit time on each plate.

$$
\sigma \left(\frac{T_{\text{ps,0}} + T_{\text{ps,1}}}{2} - \frac{T_{\text{ref,0}} + T_{\text{ref,1}}}{2} \right) = \frac{\sigma_{\text{ps,0}} \oplus \sigma_{\text{ps,1}} \oplus \sigma_{\text{ref,0}} \oplus \sigma_{\text{ref,1}}}{2} \oplus \sigma_{\text{vertex}}
$$

$$
\sigma \left(T_{\text{ps,0}} - T_{\text{ref,1}} \right) = \sigma_{\text{ps,0}} \oplus \sigma_{\text{ref,0}} \oplus \sigma_{\text{vertex}}
$$

$$
\sigma \left(T_{\text{ps,1}} - T_{\text{ref,1}} \right) = \sigma_{\text{ps,1}} \oplus \sigma_{\text{ref,1}} \oplus \sigma_{\text{vertex}}
$$

$$
\sigma \left(T_{\text{ps,0}} - T_{\text{ref,1}} \right) = \sigma_{\text{ps,0}} \oplus \sigma_{\text{ref,1}} \oplus \sigma_{\text{vertex}}
$$

$$
\sigma \left(T_{\text{ps,1}} - T_{\text{ref,0}} \right) = \sigma_{\text{ps,1}} \oplus \sigma_{\text{ref,0}} \oplus \sigma_{\text{vertex}}
$$

reference counter pre-shower counter 01,3 01,4 567,3 567,4 LXe Detector reference counter pre-shower counter BGO crystal Hydrogen target !! " " vertex

From the above equations, σ_{vertex} is expressed as

$$
\sigma_{\text{vertex}}^2 = 2\sigma^2 \left(\frac{T_{\text{ps,0}} + T_{\text{ps,1}}}{2} - \frac{T_{\text{ref,0}} + T_{\text{ref,1}}}{2} \right) - \frac{\sigma^2 (T_{\text{ps,0}} - T_{\text{ref,0}}) + \sigma^2 (T_{\text{ps,1}} - T_{\text{ref,1}}) + \sigma^2 (T_{\text{ps,0}} - T_{\text{ref,1}}) + \sigma^2 (T_{\text{ps,1}} - T_{\text{ref,0}})}{4}
$$

Result of Vertex Measurement

To estimate σ_{vertex} with 3-5 % precision, 5000 events are needed. The number of the events obtained is about 1600 due to the limitation of the beamtime and the target stability. The effect of the electronics used for DAQ has not been considered. $\sigma_{\text{vertex}} = 65.0 \pm 6.1 \text{ ps} (9.8 \pm 0.9 \text{ mm})$

Timing Calibration of LXe Detector

The calibration parameters must be extracted to estimate the gamma hit timing. Define the reference time t_{ref} as follows.

$$
t_{\rm ref} = t_{\rm ps} + t_{\rm TOF}
$$

1. The time difference dt is calculated for each photosensor **for each group of the photosensors**.

$$
dt = t_{\rm pm} - t_{\rm prop} - t_{\rm offset} - t_{\rm ref}
$$

the offset effect from the length of the cables

2. The time difference dt is calculated for each photosensor **for each photosensor**.

$$
dt = t_{\rm pm} - t_{\rm prop} - t_{\rm offset} - t_{\rm ref}
$$

the offset effect from the length of the cables

3. The time difference dt is calculated for each photosensor **for each group of the photosensors**.

$$
dt = t_{\rm pm} - t_{\rm prop} - t_{\rm offset} - t_{\rm ref}
$$

the offset effect from the length of the cables and the rest offset effect

Time Fit

fDt2VsNphe_-1_2

Before the timing calibration and the settle and the timing calibration and the timing calibration

Timing Reconstruction in LXe Detector

Gamma hit timing T_{XFC} is reconstructed with χ^2 minimization fit.

$$
\chi^2 = \sum_{\text{MPPC,PMT}} \left(\frac{t_{\text{pm}} - t_{\text{walk}} - t_{\text{prop}} - t_{\text{offset}} - T_{\text{XEC}}}{\sigma_{\text{pm}}} \right)^2
$$

 $t_{\rm{pm}}$: the timing of each photosensor

 t_{walk} : the time walk effect

 t_{prop} : the propagation time of scintillation light from γ hit position to each photosensor

 t_{offset} : time offset of each channel

 T_{XEC} : the gamma hit timing (fitting parameter)

extracted from data in the timing calibration

Resolution of LXe Detector

LXe Reconstruction

Position Resolution

Collimator is installed in position measurement.

Position resolution is measured by using collimated 17.6 MeV gamma-rays from ${}^{7}_{3}\text{Li}(p, \gamma){}^{8}_{4}\text{Be}$.

