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In addition to spacelike DVCS ...
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Figure: Deeply Virtual Compton Scattering (DVCS) : lN → l′N ′γ
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Other channels - what else is needed

I flavour separation:
I DVCS on neutron
I Deeply Virtual Meson Production (also with CC)

I x = ξ line, deconvolution problem:
I Double Deeply Virtual Compton Scattering (DDVCS) - Solid, HL-CLAS,

EIC, JLAB20+
I Hard photo- and electroproduction of a diphoton with a large invariant mass

I Universality checks, sensitivity to NLO effects:
I Timelike Compton Scattering (TCS)

I Sensivity to gluons:
I Photoproduction of heavy mesons
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Photoproduction proceses in Ultraperipheral Collisions:
LHCb, CMS, ALICE, RHIC, AFTER

σAB =

∫
dkA

dnA

dkA
σγB(WA(kA)) +

∫
dkB

dnB

dkB
σγA(WB(kB))
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Gluon GPDs in the UPC production of heavy mesons
Ivanov, Schafer, Szymanowski, Krasnikov - EPJ C34 (2004)

I Amplitude:

M ∼
( 〈O1〉V

m3

)1/2
1∫
−1

dx
[
Tg(x, ξ)F

g(x, ξ, t) + Tq(x, ξ)F
q,S(x, ξ, t)

]
,

At LO T q = 0, only gluons contribute!
I Single Transverse Spin Asymmetry:

AγN ∼ Im (HgEg?)

sensitive to poorly known GPD Eg, important for the spin rule.
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Single Transverse Spin Asymmetry
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Low energy
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Photoproduction amplitude and cross section - LO and NLO.
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Various approaches: scale fixing, resummation, ?
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we MUST also study timelike DVCS

Berger, Diehl, Pire, 2002
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Figure: Timelike Compton Scattering (TCS): γN → l+l−N ′

Why TCS:
I same proven factorization properties as DVCS
I universality of the GPDs
I another source for GPDs (special sensitivity on real part of GPD H),
I the same final state as in J/ψ, but cleaner theoretical description!
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Exciting times - DATA arrives !!!

→ P. Chatagnon et al. (CLAS), PRL 127, 262501 (2021)
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Future of TCS

I Experiments at JLab
I Prospects for EIC

I Yellow Report: Confronting DVCS and TCS results together is a mandatory
goal of the EIC to prove the consistency of the collinear QCD factorization
framework and to test the universality of GPDs.

I Preliminary predictions see Daria Sokhan talk
I TCS included in EPIC, event generator for exclusive processes, interfaced to

PARTONS (e-Print: 2205.01762 [hep-ph]), see also Kemal Tezgin talk

I Ultraperipheral Collisions at the LHC
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Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are
defined through relations:

Aµν(ξ, t) = −e2 1

(P + P ′)+
ū(P ′)

[
gµνT

(
H(ξ, t) γ+ + E(ξ, t)

iσ+ρ∆ρ

2M

)
+ iεµνT

(
H̃(ξ, t) γ+γ5 + Ẽ(ξ, t)

∆+γ5
2M

)]
u(P ) ,

where:

H(ξ, t) = +

∫ 1

−1

dx

(∑
q

T q(x, ξ)Hq(x, ξ, t) + T g(x, ξ)Hg(x, ξ, t)

)

H̃(ξ, t) = −
∫ 1

−1

dx

(∑
q

T̃ q(x, ξ)H̃q(x, ξ, t) + T̃ g(x, ξ)H̃g(x, ξ, t)

)
.
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Spacelike vs Timelike

D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86, 2012.

Thanks to simple spacelike-to-timelike relations, we can express the timelike
CFFs by the spacelike ones in the following way:

TH LO
= SH∗ ,

T H̃ LO
= −SH̃∗ ,

TH NLO
= SH∗ − iπQ2 ∂

∂Q2

SH∗ ,

T H̃ NLO
= −SH̃∗ + iπQ2 ∂

∂Q2

SH̃∗ .

The corresponding relations exist for (anti-)symmetric CFFs E (Ẽ).
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DVCS CFFs from Artificial Neural Network fit - PARTONS

H. Moutarde, P. Sznajder, J. Wagner, Eur.Phys.J. C79 (2019)
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Figure: Coverage of the (xBj, Q
2) (left) and (xBj,−t/Q2) (right) phase-spaces by the

experimental data used in DVCS CFFs fit. The data come from the Hall A (H, O),
CLAS (N, M), HERMES (•, ◦), COMPASS (�, �) and HERA H1 and ZEUS (�, ♦)
experiments. The gray bands (open markers) indicate phase-space areas (experimental
points) being excluded from this analysis due to the cuts.

14 / 27



DVCS vs TCS CFFs
O. Grocholski, H. Moutarde, B. Pire, P. Sznajder, J. Wagner, Eur.Phys.J. C80 (2020)
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Figure: Imaginary (left) and real (right) part of DVCS (up) and TCS (down) CFF for
Q2 = 2 GeV2 and t = −0.3 GeV2 as a function of ξ. The shaded red (dashed blue)
bands correspond to the data-driven predictions coming from the ANN global fit of
DVCS data and they are evaluated using LO (NLO) spacelike-to-timelike relations.
The dashed (solid) lines correspond to the GK GPD model evaluated with LO (NLO)
coefficient functions.
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TCS and Bethe-Heitler contribution to exclusive lepton pair
photoproduction.
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Figure: The Feynman diagrams for the Bethe-Heitler amplitude.

The cross-section for photoproduction of a lepton pair:

dσ

dQ′2 dt dφ d cos θ
=
d (σBH + σTCS + σINT)

dQ′2 dt dφ d cos θ
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TCS

Berger, Diehl, Pire, 2002
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Figure: Kinematical variables and coordinate axes in the γp and `+`− c.m. frames.

dσ

dQ′2 dt dφ d cos θ

I Important to measure φ !
I BH dominates at θ close to 0 and π !
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Interference

B-H dominant for not very high energies (JLAB), at higher energies the
TCS/BH ratio is bigger due to growth of the gluon and sea densities.

Pire, Szymanowski, JW PRD 83

Moutarde, Pire, Sabatié, Szymanowski, JW PRD 87
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Figure 10: The differential cross sections (solid lines) for t = −0.2GeV2, Q′2 = 5GeV2 and integrated over θ = [π/4, 3π/4],
as a function of ϕ, for s = 107 GeV2 (a), s = 105 GeV2(b), s = 103 GeV2 (c) with µ2

F = 5GeV2. We also display the Compton
(dotted), Bethe-Heitler (dash-dotted) and Interference (dashed) contributions.

and C. Weiss, Phys. Rev. D 63 (2001) 114012; N. Kivel, M. V. Polyakov and M. Vanderhaeghen, Phys. Rev. D 63, 114014
(2001).

[8] B. Pire, L. Szymanowski and J. Wagner, Nucl. Phys. Proc. Suppl. 179-180, 232 (2008).
[9] M. Gluck, P. Jimenez-Delgado and E. Reya, Eur. Phys. J. C 53 (2008) 355.

[10] C. A. Bertulani, S. R. Klein and J. Nystrand, Ann. Rev. Nucl. Part. Sci. 55 (2005) 271
[11] M. Drees and D. Zeppenfeld, Phys. Rev. D 39 (1989) 2536.
[12] E. Berger et al., Phys. Rev. Lett. 87, 142302 (2001); F. Cano and B. Pire, Eur. Phys. J. A 19, 423 (2004); S. Scopetta, Phys.

Rev. C 70, 015205 (2004) A. Kirchner and D. Mueller, Eur. Phys. J. C 32, 347 (2003); V. Guzey and M. Strikman, Phys.
Rev. C 68, 015204 (2003); V. Guzey, arXiv:0801.3235 [nucl-th] and J. Phys. G 32, 251 (2006); V. Guzey, A. W. Thomas
and K. Tsushima, arXiv:0806.3288 [hep-ph]; A. Freund and M. Strikman, Eur. Phys. J. C 33, 53 (2004); S. Liuti and
S. K. Taneja, Phys. Rev. C 72, 034902 (2005), ibid Phys. Rev. C 72 032201 (2005).

Figure: The differential cross section for t = −0.2 GeV2 , Q′2 = 5 GeV2 , and
integrated over θ ∈ (π/4, 3π/4) as a function of φ, for s = 103 GeV2.
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Interference

I The interference part of the cross-section for γp→ `+`− p with unpolarized protons and
photons is given by:

dσINT

dQ′2 dt d cos θ dϕ
∼ cosϕ · ReH(ξ, t)← Sensitivity to the D-term!

R ratio:

R =

2

∫ 2π

0

cosφ dφ

∫ 3π/4

π/4

dθ
dS

dQ′2dtdφdθ∫ 2π

0

dφ

∫ 3π/4

π/4

dθ
dS

dQ′2dtdφdθ

,

Forward Backward Asymmetry (from Pierre Chatagnon PhD thesis):

I The interference part depending on photons circular polarization ν:

dσINT

dQ′2 dt d cos θ dϕ
∼ ν sinϕ · ImH(ξ, t)
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Results from CLAS12
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Unpolarized cross section
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Figure: Differential TCS cross section integrated over θ ∈ (π/4, 3π/4) for Q′2 = 4
GeV2, t = −0.1 GeV2 and the photon beam energy Eγ = 10 GeV as a function of the
angle φ. In the left (right) panel the data-driven predictions evaluated using LO
(NLO) spacelike-to-timelike relations are shown. The dashed (solid) lines correspond
to the GK GPD model evaluated with LO (NLO) TCS coefficient functions (the curves
are the same in both panels). Note the different scales for the upper and lower panels.
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R ratio
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Figure: Ratio R evaluated with LO and NLO spacelike-to-timelike relations for
Q′2 = 4 GeV2, t = −0.35 GeV2 as a function of ξ.
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Circular asymmetry

The photon beam circular polarization asymmetry:

ACU =
σ+ − σ−
σ+ + σ−

∼ Im(H)
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Figure: Circular asymmetry ACU evaluated with LO and NLO spacelike-to-timelike
relations for Q′2 = 4 GeV2, t = −0.1 GeV2 and (left) Eγ = 10 GeV as a function of φ
(right) and φ = π/2 as a function of ξ. The cross sections used to evaluate the
asymmetry are integrated over θ ∈ (π/4, 3π/4).
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Transverse target asymmetry

dσtpol
INT

dQ′2d(cos θ)dφdtdϕS
∼ sinϕS=

[
H− ξ2

1− ξ2 E + H̃+
t

4M2
Ẽ
]
.

The transverse spin asymmetry:

AUT (ϕS) =
σ(ϕS)− σ(ϕS − π)

σ(ϕS) + σ(ϕS − π)
,

S

Figure: Transverse target spin asymmetry AUT evaluated with LO and NLO
spacelike-to-timelike relations for Q′2 = 4 GeV2, t = t0 and Eγ = 10 GeV as a
function of ϕS . The cross sections used to evaluate the asymmetry are integrated over
θ ∈ (π/4, 3π/4).
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TCS at UPC

B.Pire, L.Szymanowski, J.Wagner, PRD86
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Figure: (a) The BH cross section (b) σTCS as a function of γp c.m. energy squared s

Cross section integrated over θ = [π/4, 3π/4], φ = [0, 2π],
t = [−0.05 GeV2,−0.25 GeV2], Q′2 = [4.5 GeV2, 5.5 GeV2], and photon
energies k = [20, 900] GeV gives:

σBHpp = 2.9 pb σTCSpp = 1.9 pb .

Even better with pA collisions. Lansberg, Szymanowski, Wagner JHEP 09 (2015) 087

25 / 27



Double DVCS

ξ = −q
2
out + q2in
q2out − q2in

η , η =
q2out − q2in

(p+ p′) · (qin + qout)
.

DDVCSRe(H) ∼ P
∫

1

x± ξH
q(x, η, t) , DVCSIm(H) ∼ iπHq(±ξ, η, t)

DDVCS can provide unique information, but is very challenging experimentally.
But recent measurement of TCS should also make us more optimistic about
DDVCS!
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Summary

I UPCs is a promising tool to study exclusive photoproduction processes
I Heavy vector meson already measured in UPC - question of stability of

theooretical prediciton
I TCS is a mandatory complementary measurement to DVCS, cleanest way

to test universality of GPDs,
I Timelike-spacelike relations at LO/NLO gives us tools to use TCS data in

DVCS CFF fits, with special sensitivity to Q2 dependence,
I First data-driven and model-free predictions for TCS using global DVCS

data
I Results from CLAS12 !!!
I EIC - TCS study in Yellow Report
I TCS included in EPiC event generator.
I Measurement of TCS should also make us more optimistic about the

DDVCS , but we need muon detection. −→ see Victor
Martinez-Fernandez talk on Friday

I Natural extension : replace in final state high mass dilepton by high mass
diphoton! −→ see Lech Szymanowski talk
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