Unbiased extraction of GPDs

Paweł Sznajder National Centre for Nuclear Research, Poland

3DPartons, Orsay, October 26th, 2022

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Deeply Virtual Compton Scattering (DVCS)

factorisation for $|t|/Q^2 \ll 1$

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicitie
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference parton helicitie
nucleon helicity conserved	nucleon helicity changed	

Reduction to PDF:

$$H(x,\xi=0,t=0) \equiv q(x)$$

Polynomiality - non-trivial consequence of Lorentz invariance:

$$\mathcal{A}_{n}(\xi,t) = \int_{-1}^{1} \mathrm{d}x x^{n} H(x,\xi,t) = \sum_{\substack{j=0\\\text{even}}}^{n} \xi^{j} A_{n,j}(t) + \mathrm{mod}(n,2) \xi^{n+1} A_{n,n+1}(t)$$

Positivity bounds - positivity of norm in Hilbert space, e.g.:

$$|H(x,\xi,t)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

$$\frac{1}{1-\xi^2}$$

Nucleon tomography:

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta})$$

Energy momentum tensor in terms of form factors (OAM and mechanical forces):

$$\langle p', s' | \widehat{T}^{\mu\nu} | p, s \rangle = \overline{u}(p', s') \left[\frac{P^{\mu}P^{\nu}}{M} A(t) + \frac{\Delta}{M} \frac{P^{\mu}i\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} \left[A(t) + B(t) + L \right] \right]$$

 $\mathbf{\Delta}^2$)

- lattice-QCD the problem of the model dependency of GPDs is still poorly addressed.
- Exceptions:
 - probing nucleon tomography at low-xB
 - extraction of D-term (see: *Nature 570 (2019) 7759, E1, EPJC 81 (2021) 4, 300 and below*)

ANN analysis

Model dependent extraction

$$d_1^{uds}(t,\mu_F^2) = d_1^{uds}(\mu_F^2) \left(1 - \frac{t}{\Lambda^2}\right)^{-\alpha} \qquad \alpha = 3$$
$$\Lambda = 0$$

extraction of GPDs, nucleon tomography and orbital angular momentum (see: EPJC 82 (2022) 3, 252 and this talk)

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

Despite a substantial progress in both measurement and description of exclusive processes, and in

No GPD models that could be considered non-parametric \rightarrow no tools to study model dependency of the

This talk is based on: *EPJC 82 (2022) 3, 252* lacksquare

Eur. Phys. J. C (2022) 82:252 https://doi.org/10.1140/epjc/s10052-022-10211-5

Regular Article - Theoretical Physics

Artificial neural network modelling of generalised parton distributions

H. Dutrieux^{1,a}, O. Grocholski^{2,b}, H. Moutarde^{1,c}, P. Sznajder^{3,d}

¹ IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ² Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ³ National Centre for Nuclear Research (NCBJ), Pasteura 7, 02-093 Warsaw, Poland

Received: 22 December 2021 / Accepted: 13 March 2022 / Published online: 23 March 2022 © The Author(s) 2022, corrected publication 2022

- Modelling in (x, ξ) -space will be presented
- Then, modelling in (β , α)-space will be presented
- t-dependance neglected, but can be easily added \bullet

THE EUROPEAN **PHYSICAL JOURNAL C**

Check for updates

Principles of modelling

Polynomiality:

$$\mathcal{A}_{n}(\xi) = \int_{-1}^{1} \mathrm{d}x x^{n} H(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^{n} \xi^{j} A_{n,j} + \mathrm{mod}(n,2) \xi^{n+1} A_{n,n+1}$$

Let us express GPD by:

$$H^N(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^N f_j(x)\xi^j$$

only even j as there is no odd power of ξ in polynomiality expansion

Support:

$$f_j(-1) = f_j(1) = 0$$
 we want GPDs to

Mellin coefficients:

$$A_{n,j} = \int_{-1}^{1} \mathrm{d}x x^n f_j(x)$$
 choice of $f_j(x)$ func

where e.g.:

$$A_{0,2} = \int_{-1}^{1} \mathrm{d}x f_0(x) = 0$$

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

vanish at |x| = 1

ctional form is arbitrary

Polynomial basis:

This basis leads to Dual Parameterisation \rightarrow M. Polyakov, A. Shuvaev, hep-ph/0207153 Any attempt of describing GPDs by orthogonal polynomials will lead to this basis

$$f_j(x) = \sum_{i=0}^{N+2} w_{i,j} x^i$$

GPD will be expressed by sum of monomials $x^i \xi^j$

ANN basis:

New! We can describe GPD by a single ANN

$$f_j(x) = \text{ANN}_j(x)$$

GPD will be expressed by sum of ANNs multiplied by ξ^{i}

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

ξ = 0

ξ = 0.5

Note:

- positivity not enforced here
- few extensions of this modelling possible, see the next slide

Possible modifications

Basic:

With explicit PDF:

Vanishing at x=xi:

With D-term:

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

$$H(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^{N} f_j(x)\xi^j$$

$$H(x,\xi) = q(x) + \sum_{\substack{j=2\\\text{even}}}^{N} f_j(x)\xi^j$$

$$H(x,\xi) = (x^2 - \xi^2) \sum_{\substack{j=0 \ \text{even}}}^{N} f_j(x)\xi^j$$

$$H(x,\xi) = D_{\text{term}}(x/\xi) + \sum_{\substack{j=0\\\text{even}}}^{N} f_j(x)\xi^j$$

Double distribution:

$$H(x,\xi,t) = \int \mathrm{d}\Omega F(\beta,\alpha,t)$$

where:

$$d\Omega = d\beta \, d\alpha \, \delta(x - \beta - \alpha \xi)$$
$$|\alpha| + |\beta| \le 1$$

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

from PRD83, 076006, 2011

Double distribution:

$$(1-x^2)F_C(\beta,\alpha) + (x^2-\xi^2)F_S(\beta,\alpha) + \xi F_D(\beta,\alpha)$$

Classical term:	Sha
$F_C(\beta, \alpha) = f(\beta)h_C(\beta, \alpha)\frac{1}{1-\beta^2}$	$F_S(\beta, \alpha) = f(\beta)$
$f(eta) = \operatorname{sgn}(eta) q(eta)$	$f(\beta) = \operatorname{sgn}(\beta)q$
$h_C(\beta, \alpha) = \frac{\text{ANN}_C(\beta , \alpha)}{\int_{-1+ \beta }^{1- \beta } d\alpha \text{ANN}_C(\beta , \alpha)}$	$h_S(eta, lpha)/N_S = -\int$

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

dow term:

 $B)h_S(eta, lpha)$

 $q(|\beta|)$

 $\operatorname{ANN}_{S}(|\beta|, \alpha)$ $l^{1-|\beta|}$ $d\alpha ANN_S(|\beta|, \alpha)$ $-1+|\beta|$ $\mathrm{ANN}_{S'}(|\beta|, \alpha)$ $l^{1-|\beta|}$ $d\alpha ANN_{S'}(|\beta|, \alpha)$ $J_{-1+|\beta|}$

 $\operatorname{ANN}_{S'}(|\beta|, \alpha) \equiv \operatorname{ANN}_C(|\beta|, \alpha)$

D-term:

$$F_D(\beta, \alpha) = \delta(\beta)D(\alpha)$$

$$D(\alpha) = (1 - \alpha^2) \sum_{\substack{i=1 \\ \text{odd}}} d_i C_i^{3/2} \left(d_i C_i^{3/2} \right) \left(d_i C_i^{3$$

Shadow term is closely related to the so-called shadow GPDs

Shadow GPDs have considerable size and:

- at the initial scale do not contribute to both PDFs and CFFs
- at some other scale they contribute negligibly

making the deconvolution of CFFs ill-posed

We found such GPDs for both LO and NLO

V. Bertone et al., Phys. Rev. D 103 (2021) 11, 114

_		_	
4	0	1	9

Principles of modelling

Activation function:

$$\left(\varphi_i\left(w_i^{\beta}|\beta| + w_i^{\alpha}\alpha/(1-|\beta|) + b_i\right) - \varphi_i\left(w_i^{\beta}|\beta| + w_i^{\alpha} + b_i\right)\right) + (w^{\alpha} \to -w^{\alpha})$$

Requirements:

symmetric w.r.t. α symmetric w.r.t. β vanishes at $|\alpha| + |\beta| = 1$

Conditions:

- Input: $400 \text{ x} \neq \xi$ points generated with GK model
- Positivity not forced

Technical detail of the analysis:

- Minimisation with genetic algorithm
- Replication for estimation of model uncertainties
- "Local" detection of outliers
- Dropout algorithm for regularisation

ANN model 68% CL $F_{C} + F_{S} + F_{D}$

Conditions:

- Input: 400 x \neq ξ points generated with GK model
- Positivity not forced

Mellin mom. coefficients:

related to D-term

Conditions:

- Input: $200 x = \xi$ points generated with GK model
- Positivity not forced

Conditions:

- Input: $200 x = \xi$ points generated with GK model
- Positivity forced

Conditions:

- Input: $200 x = \xi$ points generated with GK model
- Positivity forced

Paweł Sznajder / Unbiased extraction of GPDs / October 26, 2022

- For the first time, we propose modelling GPDs based on ANNs \rightarrow new, nontrivial and timely analysis
- Our modelling fulfils all theory-driven constraints (including positivity) → subject not touched enough in the current literature
- Can easily accommodate lattice-QCD results → important to include additional sources of GPD information
- These is the new tool to address the long-standing problem of model dependency of GPDs

