Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass 3DPartons Week

Saad Nabeebaccus

Based on works with S. Wallon, L. Szymanowski, B. Pire, R. Boussarie, G. Duplančić, K. Passek-Kumerički

DVCS: exclusive process (non forward amplitude) ? Fourier transf.: $t \leftrightarrow \text{impact parameter}$ $(x, \xi, t) \Rightarrow$ 3-dimensional structure Coefficient Function ⊗ Generalized Parton Distribution (hard) (soft) [Müller et al. '91 - '94; Radyushkin '96; Ji '97]

DVMP: γ replaced by ρ, π, \cdots

GPD ⊗ CF ⊗ Distribution Amplitude (soft) (hard) (soft)

[Collins, Frankfurt, Strikman '97; Radyushkin '97]

proofs valid only for some restricted cases

Quark GPDs at twist 2 [Diehl]

without helicity flip (chiral-even Γ matrices): 4 chiral-even GPDs: (Note: $\Delta = p' - p$)

$$
F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix^{p+z^{-}}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0}
$$

=
$$
\frac{1}{2P^{+}} \left[H^{q}(x, \xi, t) \bar{u}(p') \gamma^{+} u(p) + E^{q}(x, \xi, t) \bar{u}(p') \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right],
$$

Quark GPDs at twist 2 [Diehl]

without helicity flip (chiral-even Γ matrices): 4 chiral-even GPDs: (Note: $\Delta = p' - p$)

$$
F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix^{p+z^{-}}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0}
$$

=
$$
\frac{1}{2P^{+}} \left[H^{q}(x, \xi, t) \bar{u}(p') \gamma^{+} u(p) + E^{q}(x, \xi, t) \bar{u}(p') \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right],
$$

$$
\tilde{F}^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+} \gamma_{5} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0}
$$
\n
$$
= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \bar{u}(p') \gamma^{+} \gamma_{5} u(p) + \tilde{E}^{q}(x,\xi,t) \bar{u}(p') \frac{\gamma_{5} \Delta^{+}}{2m} u(p) \right].
$$

Quark GPDs at twist 2 [Diehl]

without helicity flip (chiral-even Γ matrices): 4 chiral-even GPDs: (Note: $\Delta = p' - p$)

$$
F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix^{p+z^{-}}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0}
$$

=
$$
\frac{1}{2P^{+}} \left[H^{q}(x, \xi, t) \bar{u}(p') \gamma^{+} u(p) + E^{q}(x, \xi, t) \bar{u}(p') \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right],
$$

$$
\tilde{F}^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+} \gamma_{5} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0}
$$
\n
$$
= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x, \xi, t) \bar{u}(p') \gamma^{+} \gamma_{5} u(p) + \tilde{E}^{q}(x, \xi, t) \bar{u}(p') \frac{\gamma_{5} \Delta^{+}}{2m} u(p) \right].
$$
\n
$$
\lim_{z \to 0} \tilde{E} = 0, \quad z = 0,
$$

 $H^q \xrightarrow{\xi=0,t=0}$ PDF q \widetilde{H}^q $\xrightarrow{\xi=0,t=0}$ polarized PDF Δq with helicity flip (chiral-odd Γ matrices): 4 chiral-odd GPDs:

$$
\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) i \sigma^{+i} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0}
$$
\n
$$
= \frac{1}{2P^{+}} \bar{u}(p') \left[H_{\tau}^{q} i \sigma^{+i} + \tilde{H}_{\tau}^{q} \frac{P^{+} \Delta^{i} - \Delta^{+} P^{i}}{m^{2}} + E_{\tau}^{q} \frac{\gamma^{+} \Delta^{i} - \Delta^{+} \gamma^{i}}{2m} + \tilde{E}_{\tau}^{q} \frac{\gamma^{+} P^{i} - P^{+} \gamma^{i}}{m} \right] u(p),
$$

with helicity flip (chiral-odd Γ matrices): 4 chiral-odd GPDs:

$$
\frac{1}{2}\int \frac{dz^-}{2\pi} e^{i\alpha P^+ z^-} \langle p' | \bar{q} \left(-\frac{1}{2}z \right) i \sigma^{+i} q \left(\frac{1}{2}z \right) | p \rangle \Big|_{z^+ = 0, z_\perp = 0}
$$
\n
$$
= \frac{1}{2P^+} \bar{u}(p') \left[H_T^q i \sigma^{+i} + \tilde{H}_T^q \frac{P^+ \Delta^i - \Delta^+ P^i}{m^2} + E_T^q \frac{\gamma^+ P^i - P^+ \gamma^i}{m} \right] u(p),
$$

 H^q T $\xrightarrow{\xi=0,t=0}$ quark transversity PDFs δq

Note:
$$
\tilde{E}^q_T(x, -\xi, t) = -\tilde{E}^q_T(x, \xi, t)
$$

Why consider a gamma-meson pair? Understanding transversity

 \blacktriangleright Transverse spin content of the proton: $|\uparrow\rangle_{(x)}$ ∼ $|\rightarrow\rangle + |\leftarrow\rangle$ $|\downarrow\rangle(x)$ \sim $|\rightarrow\rangle$ – $|\leftarrow\rangle$ spin along x helicity states

 \triangleright Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.

Why consider a gamma-meson pair? Understanding transversity

- \triangleright Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.
- ▶ Transversity GPDs are completely unknown experimentally.
- \blacktriangleright For massless (anti)particles, chirality $=$ (-)helicity
- ◮ Transversity GPDs can thus be accessed through chiral-odd Γ matrices.

Why consider a gamma-meson pair? Understanding transversity

- \triangleright Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.
- ▶ Transversity GPDs are completely unknown experimentally.
- \blacktriangleright For massless (anti)particles, chirality $=$ (-)helicity
- ◮ Transversity GPDs can thus be accessed through chiral-odd Γ matrices.
- ▶ Since (in the massless limit) QCD and QED are chiral-even $(\gamma^{\mu}, \, \gamma^{\mu} \gamma^{5})$, the chiral-odd quantities $(1, \, \gamma^{5}, \, [\gamma^{\mu}, \gamma^{\nu}])$ which one wants to measure should appear in pairs.

ighthrow the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)

- ighthrow the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)
- ightharpoonup $\gamma^* N \to \rho_\mathcal{T} N' = 0$, since such a process would require a helicity transfer of 2 from a photon. [Diehl, Gousset, Pire], [Collins, Diehl]
- ighthrow the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)
- ightharpoonup $\gamma^* N \to \rho_\mathcal{T} N' = 0$, since such a process would require a helicity transfer of 2 from a photon. [Diehl, Gousset, Pire], [Collins, Diehl]
- \triangleright lowest order diagrammatic argument:

$$
\gamma^\alpha[\gamma^\mu,\gamma^\nu]\gamma_\alpha=0
$$

- \blacktriangleright This vanishing only occurs at twist 2
- \triangleright At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]

 \blacktriangleright This vanishing only occurs at twist 2

▶ At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]

▶ However processes involving twist 3 DAs may face problems with factorisation (end-point singularities)

can be made safe in the high-energy k_T −factorisation approach

[Anikin, Ivanov, Pire, Szymanowski, Wallon]

A convenient alternative solution

- \triangleright Circumvent this using 3-body final states [Ivanov, Pire, Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire, Segond, Szymanowski, Wallon]
- ► Consider the process $\gamma N \rightarrow \gamma MN'$, $M =$ meson. Collinear factorisation of the amplitude at large $M_{\gamma M}^2$.

A convenient alternative solution

- Circumvent this using 3-body final states *[Ivanov, Pire,* Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire, Segond, Szymanowski, Wallon]
- ► Consider the process $\gamma N \rightarrow \gamma MN'$, $M =$ meson. Collinear factorisation of the amplitude at large $M_{\gamma M}^2$.

 \blacktriangleright Recently, factorisation has been proved for the process $MN \rightarrow \gamma \gamma N'$ by Qiu, Yu [2205.07846].

- \blacktriangleright Recently, factorisation has been proved for the process $MN \rightarrow \gamma \gamma N'$ by Qiu, Yu [2205.07846].
- Requires large p_T .
- \blacktriangleright Recently, factorisation has been proved for the process $MN \rightarrow \gamma \gamma N'$ by Qiu, Yu [2205.07846].
- Requires large p_T .
- In fact, NLO computation has been performed for $\gamma N \to \gamma \gamma N'$ by Grocholski et al. $[2110.00048]$. \implies See Lech's talk

Chiral-even GPDs using $\pi^{\pm}\gamma$ production

chiral-even twist 2 GPD

[G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon]

GPDs using $\rho_l \gamma$ production

chiral-even twist 2 GPD

[R. Boussarie, B. Pire, L. Szymanowski, S. Wallon]

Chiral-odd GPDs using $\rho_T \gamma$ production

chiral-odd twist 2 GPD

[R. Boussarie, B. Pire, L. Szymanowski, S. Wallon]

Chiral-odd GPDs using $\rho_T \gamma$ production

How does it work?

Typical non-zero diagram for a transverse ρ meson

the σ matrices (from either the DA or the GPD) do not kill it anymore!

 $\gamma(q)+N(p_1)\to \gamma(k)+\rho(p_\rho,\varepsilon_\rho)+N^\prime(p_2)$

$\gamma(q)+N(p_1)\to \gamma(k)+\rho(p_\rho,\varepsilon_\rho)+N^\prime(p_2)$

Useful Mandelstam variables:

$$
t = (p_2 - p_1)^2
$$

$$
u' = (p_\rho - q)^2
$$

$$
t' = (k - q)^2
$$

$$
\gamma(q) + N(p_1) \rightarrow \gamma(k) + \rho(p_\rho, \varepsilon_\rho) + N'(p_2)
$$

Useful Mandelstam variables:

$$
t = (p_2 - p_1)^2
$$

$$
u' = (p_\rho - q)^2
$$

$$
t' = (k - q)^2
$$

▶ Factorisation requires: $-u' > 1 \text{ GeV}^2$, $-t' > 1 \text{ GeV}^2$ and $(-t)_{\text{min}} \leqslant -t \leqslant .5 \text{ GeV}^2$

$$
\gamma(q) + N(p_1) \rightarrow \gamma(k) + \rho(p_\rho, \varepsilon_\rho) + N'(p_2)
$$

Useful Mandelstam variables:

$$
t = (p_2 - p_1)^2
$$

$$
u' = (p_\rho - q)^2
$$

$$
t' = (k - q)^2
$$

 \blacktriangleright Factorisation requires: $-u' > 1 \text{ GeV}^2$, $-t' > 1 \text{ GeV}^2$ and $(-t)_{\text{min}} \leqslant -t \leqslant .5 \text{ GeV}^2$

► Cross-section differential in $(-u')$ and $M_{\gamma\rho}^2$, and evaluated at $(-t) = (-t)_{\min}$.

A total of 20 diagrams to compute

 \blacktriangleright The other half can be deduced by $q \leftrightarrow \bar{q}$ (anti)symmetry depending on C -parity in t −channel

 \triangleright Red diagrams cancel in the chiral-odd case

We parameterise the GPDs in terms of *double distributions* (Radyushkin-type parametrisation)

We parameterise the GPDs in terms of *double distributions* (Radyushkin-type parametrisation)

For polarized PDFs (and hence transversity PDFs), two scenarios are proposed for the parameterization:

- \triangleright "standard" scenario, with flavor-symmetric light sea quark and antiquark distributions.
- ▶ "valence" scenario with a completely flavor-asymmetric light sea quark densities.

 \triangleright We take the simplistic asymptotic form of the DAs

$$
\phi_{\pi}(z)=\phi_{\rho\parallel}(z)=\phi_{\rho\perp}(z)=6z(1-z).
$$

▶ We also investigate the effect of using a holographic DA (preliminary):

$$
\phi_{\text{hol}}(z) = \frac{8}{\pi} \sqrt{z(1-z)}.
$$

 \triangleright We take the simplistic asymptotic form of the DAs

$$
\phi_{\pi}(z)=\phi_{\rho\parallel}(z)=\phi_{\rho\perp}(z)=6z(1-z).
$$

 \triangleright We also investigate the effect of using a holographic DA (preliminary):

$$
\phi_{\text{hol}}(z) = \frac{8}{\pi} \sqrt{z(1-z)}.
$$

Suggested by AdS/QCD correspondence [Brodsky, de Teramond], dynamical chiral symmetry breaking on the light-front [Shi et al.], and recent lattice results. [Gao et al.]

Results Fully-differential cross-sections:

Results

Fully-differential cross-sections:

Single differential cross-section:

Single differential cross-section:

Peak *always* at low $M_{\gamma M}^2 \implies$ Importance sampling needed for higher $S_{\gamma N}$!

Results Integrated cross-section: Valence vs Standard:

dotted: "standard" one

To obtain distribution in $S_{\gamma N}$, we exploit non-trivial mapping between 1 set of data at a fixed $\mathcal{S}_{\gamma\boldsymbol{N}}$ to other values $\tilde{\mathcal{S}}_{\gamma\boldsymbol{N}}$ lower than it.

To obtain distribution in $S_{\gamma N}$, we exploit non-trivial mapping between 1 set of data at a fixed $\mathcal{S}_{\gamma\boldsymbol{N}}$ to other values $\tilde{\mathcal{S}}_{\gamma\boldsymbol{N}}$ lower than it.

$$
\tilde{M}_{\gamma M}^2 = M_{\gamma M}^2 \frac{\tilde{S}_{\gamma N} - M_N^2}{S_{\gamma N} - M_N^2},
$$

$$
- \tilde{u}' = \frac{\tilde{M}_{\gamma M}^2}{M_{\gamma M}^2}(-u').
$$

To obtain distribution in $S_{\gamma N}$, we exploit non-trivial mapping between 1 set of data at a fixed $\mathcal{S}_{\gamma\boldsymbol{N}}$ to other values $\tilde{\mathcal{S}}_{\gamma\boldsymbol{N}}$ lower than it.

$$
\tilde{M}_{\gamma M}^2 = M_{\gamma M}^2 \frac{\tilde{S}_{\gamma N} - M_N^2}{S_{\gamma N} - M_N^2},
$$

$$
- \tilde{u}' = \frac{\tilde{M}_{\gamma M}^2}{M_{\gamma M}^2} (-u').
$$

Implementing importance sampling \implies careful consideration of the various limits involved are needed.

To obtain distribution in $S_{\gamma N}$, we exploit non-trivial mapping between 1 set of data at a fixed $\mathcal{S}_{\gamma\boldsymbol{N}}$ to other values $\tilde{\mathcal{S}}_{\gamma\boldsymbol{N}}$ lower than it.

$$
\tilde{M}_{\gamma M}^2 = M_{\gamma M}^2 \frac{\tilde{S}_{\gamma N} - M_N^2}{S_{\gamma N} - M_N^2},
$$

$$
- \tilde{u}' = \frac{\tilde{M}_{\gamma M}^2}{M_{\gamma M}^2} (-u').
$$

Implementing importance sampling \implies careful consideration of the various limits involved are needed.

Mapping possible since different sets of $(S_{\gamma N}, M_{\gamma M}^2, -u')$ correspond to the same (α, ξ) .

$$
\alpha = \frac{-u'}{M_{\gamma M}^2} \ , \qquad \xi = \frac{M_{\gamma M}^2}{2(S_{\gamma N} - M_N^2) - M_{\gamma M}^2}
$$

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 24/33

.

Fully differential cross-section: Holographic vs Asymptotical DA:

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

Fully differential cross-section: Holographic vs Asymptotical DA:

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario \implies DA type has sizable effect, larger than the one due to uncertainties on polarized PDFs

▶ Circular asymmetry $= 0$ (for unpolarised target).

- \blacktriangleright Circular asymmetry $= 0$ (for unpolarised target).
- ► Linear asymmetry $= \frac{d\sigma_x d\sigma_y}{d\sigma_x + d\sigma_y}$, where x is the direction defined by p_{\perp} (direction of outgoing photon in the transverse plane).
- ▶ Kleiss-Sterling spinor techniques used to obtain expressions.

Polarisation Asymmetries of incoming photon

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

$$
\blacktriangleright S_{\gamma N} = 8, 14, 20 \text{ GeV}^2
$$

Polarisation Asymmetries of incoming photon

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

$$
\blacktriangleright S_{\gamma N} = 8, 14, 20 \text{ GeV}^2
$$

 ρ_L^0 can distinguish between DA model, while π^+ (and π^-) can distinguish between GPD model (valence vs standard).

Good statistics: For example, at JLab Hall B:

ighthrountagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution

Good statistics: For example, at JLab Hall B:

- ighthrountagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- ► with an expected luminosity of $\mathcal{L} = 100 \text{ nb}^{-1} s^{-1}$, for 100 days of run:

$$
- \rho_L^0 \text{ (on } p) : \approx 2.4 \times 10^5
$$

 ρ^0 (on p) : \approx 7.5 \times 10³ (Chiral-odd)

$$
\;-\;\rho^+_L:\;\approx 1.4\times 10^5
$$

 $- \pi^+$: $\approx 1.8 \times 10^5$

At COMPASS:

► Taking a luminosity of $\mathcal{L} = 0.1 \text{ nb}^{-1} s^{-1}$, and 300 days of run,

$$
- \rho_L^0 \text{ (on } p) : \approx 1.2 \times 10^3
$$

$$
- \rho_L^+:\approx 7.4\times 10^2
$$

$$
- \pi^+ : \approx 4.5 \times 10^2
$$

At COMPASS:

- ► Taking a luminosity of $\mathcal{L} = 0.1 \text{ nb}^{-1} s^{-1}$, and 300 days of run,
	- ρ_L^0 (on p) : $\approx 1.2 \times 10^3$

$$
- \rho^+_L: \approx 7.4 \times 10^2
$$

$$
- \pi^+ : \approx 4.5 \times 10^2
$$

 \blacktriangleright Lower numbers due to low luminosity (factor of 10^3 less than JLab!)

Prospects at experiments (Preliminary Counting rates: EIC

▶ At the future EIC, with an expected integrated luminosity of $10\,{\rm fb}^{-1}$ (about 100 times smaller than JLab):

$$
- \rho_L^0 \text{ (on } p) : \approx 2.4 \times 10^4
$$

$$
- \rho_L^+:\approx 1.5\times 10^4
$$

$$
- \pi^+ : \approx 1.3 \times 10^4
$$

Prospects at experiments (Preliminary Counting rates: EIC

▶ At the future EIC, with an expected integrated luminosity of $10\,{\rm fb}^{-1}$ (about 100 times smaller than JLab):

$$
- \rho_L^0 \text{ (on } p) : \approx 2.4 \times 10^4
$$

$$
-~\rho^+_L:\,\approx 1.5\times 10^4
$$

 $- \pi^+$: $\approx 1.3 \times 10^4$

\triangleright Small ξ study:

With $160 < S_{\gamma N} < 20000$, probing $5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3}$:

$$
- \rho_L^0 \text{ (on } \rho) : \approx 2.3 \times 10^3
$$

-
$$
\rho_L^+ : \approx 1.8 \times 10^3
$$

-
$$
\pi^+ : \approx 1.0 \times 10^3
$$

Prospects at experiments (Preliminary LHC at UPC

For p-Pb UPCs at LHC (integrated luminosity of 1200 nb^{-1}):

 \triangleright With future data from runs 3 and 4,

$$
- \rho_L^0: \approx 1.6 \times 10^4
$$

$$
- \rho_L^+ : \approx 1.0 \times 10^4
$$

$$
- \pi^+ : \approx 9.0 \times 10^3
$$

Prospects at experiments (Preliminary LHC at UPC

For p-Pb UPCs at LHC (integrated luminosity of 1200 nb^{-1}):

 \triangleright With future data from runs 3 and 4,

 ρ_{L}^0 : $\approx 1.6 \times 10^4$

$$
- \rho_L^+ : \approx 1.0 \times 10^4
$$

 $- \pi^+$: $\approx 9.0 \times 10^3$

► With $160 < S_{\gamma N} < 20000$, probing $5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3}$:

$$
- \rho_L^0: \approx 1.6 \times 10^3
$$

$$
-~\rho^+_L:\approx 1.2\times 10^3
$$

 $- \pi^+$: $\approx 6.5 \times 10^2$

Prospects at experiments (Preliminary LHC at UPC

For p-Pb UPCs at LHC (integrated luminosity of 1200 nb^{-1}):

 \triangleright With future data from runs 3 and 4,

 ρ_{L}^0 : $\approx 1.6 \times 10^4$

- ρ_L^+ : $\approx 1.0 \times 10^4$
- π^+ : $\approx 9.0 \times 10^3$

► With $160 < S_{\gamma N} < 20000$, probing $5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3}$:

- ρ_{L}^0 : $\approx 1.6 \times 10^3$
- ρ_L^+ : $\approx 1.2 \times 10^3$
- π^+ : $\approx 6.5 \times 10^2$
- ▶ Photon flux enhanced by a factor of Z^2 , but drops rapidly with $S_{\gamma N} \Longrightarrow$ Low luminosity not compensated by larger photon flux.

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 31/33

 \blacktriangleright Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs.

- \blacktriangleright Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs.
- ▶ Especially interesting since it can probe chiral-odd GPD at the leading twist.
- \blacktriangleright Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs.
- ▶ Especially interesting since it can probe chiral-odd GPD at the leading twist.
- ▶ Proof of factorisation for this family of processes now available.
- \blacktriangleright Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs.
- ▶ Especially interesting since it can probe chiral-odd GPD at the leading twist.
- ▶ Proof of factorisation for this family of processes now available.
- \triangleright Good statistics in various experiments, particularly at JLab.
- \blacktriangleright Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs.
- ▶ Especially interesting since it can probe chiral-odd GPD at the leading twist.
- ▶ Proof of factorisation for this family of processes now available.
- \triangleright Good statistics in various experiments, particularly at JLab.
- \triangleright Small ξ limit of GPDs can be investigated by exploiting high energies available at EIC and UPCs at LHC.

► Holographic vs Asymptotical DA, polarisation asymmetries of incoming photon and kinematics for COMPASS, EIC and LHC at UPC [to appear!]

- ► Holographic vs Asymptotical DA, polarisation asymmetries of incoming photon and kinematics for COMPASS, EIC and LHC at UPC [to appear!]
- \blacktriangleright The processes $\gamma N \to \gamma \pi^0 N'$ and $\gamma N \to \gamma \eta^0 N'$ are of particular interest, since they give access to gluonic GPDs at Born level [ongoing]

- ► Holographic vs Asymptotical DA, polarisation asymmetries of incoming photon and kinematics for COMPASS, EIC and LHC at UPC [to appear!]
- \blacktriangleright The processes $\gamma N \to \gamma \pi^0 N'$ and $\gamma N \to \gamma \eta^0 N'$ are of particular interest, since they give access to gluonic GPDs at Born level [ongoing]
- ▶ Compute NLO corrections.

- ► Holographic vs Asymptotical DA, polarisation asymmetries of incoming photon and kinematics for COMPASS, EIC and LHC at UPC [to appear!]
- \blacktriangleright The processes $\gamma N \to \gamma \pi^0 N'$ and $\gamma N \to \gamma \eta^0 N'$ are of particular interest, since they give access to gluonic GPDs at Born level [ongoing]
- ▶ Compute NLO corrections.
- Generalise to electroproduction $(Q^2 \neq 0)$.

- ► Holographic vs Asymptotical DA, polarisation asymmetries of incoming photon and kinematics for COMPASS, EIC and LHC at UPC [to appear!]
- \blacktriangleright The processes $\gamma N \to \gamma \pi^0 N'$ and $\gamma N \to \gamma \eta^0 N'$ are of particular interest, since they give access to gluonic GPDs at Born level [ongoing]
- ▶ Compute NLO corrections.
- Generalise to electroproduction $(Q^2 \neq 0)$.
- ▶ Add Bethe-Heitler component (photon emitted from incoming lepton)
	- zero in chiral-odd case.
	- suppressed in chiral-even case.

- ► Holographic vs Asymptotical DA, polarisation asymmetries of incoming photon and kinematics for COMPASS, EIC and LHC at UPC [to appear!]
- \blacktriangleright The processes $\gamma N \to \gamma \pi^0 N'$ and $\gamma N \to \gamma \eta^0 N'$ are of particular interest, since they give access to gluonic GPDs at Born level [ongoing]
- ▶ Compute NLO corrections.
- Generalise to electroproduction $(Q^2 \neq 0)$.
- ▶ Add Bethe-Heitler component (photon emitted from incoming lepton)
	- zero in chiral-odd case.
	- suppressed in chiral-even case. The FND

BACKUP SLIDES
What are GPDs?

From Wigner distributions to GPDs and PDFs

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 2/22

Computation Parametrising the GPDs: ρ_L and π case,

$$
\int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle p_2, \lambda_2 | \bar{\psi}_q \left(-\frac{1}{2} z^- \right) \gamma^+ \psi \left(\frac{1}{2} z^- \right) | p_1, \lambda_1 \rangle
$$

=
$$
\frac{1}{2P^+} \bar{u}(p_2, \lambda_2) \left[H^q(x, \xi, t) \gamma^+ + E^q(x, \xi, t) \frac{i\sigma^{\alpha+} \Delta_\alpha}{2m} \right] u(p_1, \lambda_1)
$$

$$
\int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle p_2, \lambda_2 | \bar{\psi}_q \left(-\frac{1}{2} z^- \right) \gamma^+ \gamma^5 \psi \left(\frac{1}{2} z^- \right) | p_1, \lambda_1 \rangle
$$

=
$$
\frac{1}{2P^+} \bar{u}(p_2, \lambda_2) \left[\tilde{H}^q(x, \xi, t) \gamma^+ \gamma^5 + \tilde{E}^q(x, \xi, t) \frac{\gamma^5 \Delta^+}{2m} \right] u(p_1, \lambda_1)
$$

 \blacktriangleright Take the limit $\Delta_{\perp}=0$.

In that case and for small ξ , the dominant contributions come from H^q and \tilde{H}^q .

Computation Parametrising the GPDs: ρ_T case,

$$
\int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle p_2, \lambda_2 | \bar{\psi}_q \left(-\frac{1}{2} z^- \right) i\sigma^{+i} \psi \left(\frac{1}{2} z^- \right) | p_1, \lambda_1 \rangle
$$
\n
$$
= \frac{1}{2P^+} \bar{u}(p_2, \lambda_2) \left[H_T^q(x, \xi, t) i\sigma^{+i} + \tilde{H}_T^q(x, \xi, t) \frac{P^+ \Delta^i - \Delta^+ P^i}{M_N^2} \right.
$$
\n
$$
+ E_T^q(x, \xi, t) \frac{\gamma^+ \Delta^i - \Delta^+ \gamma^i}{2M_N} + \tilde{E}_T^q(x, \xi, t) \frac{\gamma^+ P^i - P^+ \gamma^i}{M_N} \right] u(p_1, \lambda_1)
$$

 \blacktriangleright Take the limit $\Delta_{\perp}=0$.

 \blacktriangleright In that case and for small ξ , the dominant contributions come from H^q T^q .

Computation Parametrising the GPDs: Double distributions

▶ GPDs can be represented in terms of Double Distributions [Radyushkin]

$$
H^{q}(x,\xi,t=0)=\int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \delta(\beta+\xi\alpha-x) f^{q}(\beta,\alpha)
$$

 \triangleright ansatz for these Double Distributions [Radyushkin]:

\blacktriangleright chiral-even sector:

$$
f^{q}(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \overline{q}(-\beta) \Theta(-\beta),
$$

$$
\tilde{f}^{q}(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) \Delta q(\beta) \Theta(\beta) + \Pi(-\beta, \alpha) \Delta \overline{q}(-\beta) \Theta(-\beta).
$$

 \blacktriangleright chiral-odd sector:

$$
f^q_\mathcal{T}(\beta,\alpha,t=0)=\Pi(\beta,\alpha)\,\delta q(\beta)\Theta(\beta)-\Pi(-\beta,\alpha)\,\delta\bar{q}(-\beta)\,\Theta(-\beta)\,.
$$

$$
\blacktriangleright \ \Pi(\beta,\alpha) = \frac{3}{4} \frac{(1-\beta)^2 - \alpha^2}{(1-\beta)^3} : \text{ profile function}
$$

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 5/22

 \triangleright simplistic factorised ansatz for the *t*-dependence:

$$
H^{q}(x,\xi,t)=H^{q}(x,\xi,t=t_{\min})\times F_{H}(t)
$$

with
$$
F_H(t) = \frac{(t_{\min} - C)^2}{(t - C)^2}
$$
 a standard dipole form factor
\n $(C = 0.71 \text{GeV}^2)$

 \blacktriangleright $q(x)$: unpolarized PDF [GRV-98]

and [MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo]

- \triangleright $\Delta q(x)$ polarized PDF [GRSV-2000]
- \triangleright $\delta q(x)$: transversity PDF [Anselmino et al.]

Effects are not significant! But relevant for NLO corrections!

Typical kinematic point (for JLab kinematics): $\xi = .1 \leftrightarrow \mathcal{S}_{\gamma N} = 20\; \text{GeV}^2$ and $M_{\gamma \rho}^2 = 3.5\; \text{GeV}^2$

$$
\tilde{H}^{q(-)}(x,\xi,t) = \tilde{H}^q(x,\xi,t) - \tilde{H}^q(-x,\xi,t) \quad [C=-1]
$$

"valence" and "standard": two GRSV Ansätze for $\Delta q(x)$

Computation vs Standard scenarios in H_T (Chiral-odd)

Typical kinematic point (for JLab kinematics): $\xi = .1 \; \leftrightarrow \; \mathcal{S}_{\gamma N} = 20 \; \text{GeV}^2$ and $\mathcal{M}_{\gamma \rho}^2 = 3.5 \; \text{GeV}^2$

$$
H_T^{q(-)}(x,\xi,t) = H_T^q(x,\xi,t) + H_T^q(-x,\xi,t) \quad [C = -1]
$$

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 9/22

 \blacktriangleright Helicity conserving (vector) DA at twist 2: ρ_L

$$
\langle 0|\bar{u}(0)\gamma^{\mu}u(x)|\rho^{0}(p,s)\rangle = \frac{p^{\mu}}{\sqrt{2}}f_{\rho}\int_{0}^{1}du \ e^{-iup\cdot x}\phi_{\parallel}(u)
$$

 \rightharpoonup ρ _T DA at twist 2:

$$
\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho^0(p,s)\rangle=\frac{i}{\sqrt{2}}(\epsilon^{\mu}_{\rho}\rho^{\nu}-\epsilon^{\nu}_{\rho}\rho^{\mu})f^{\perp}_{\rho}\int_0^1du\ e^{-iup\cdot x}\phi_{\perp}(u)
$$

- Work in the limit of:
	- \bullet $\Delta_{\perp} \ll p_{\perp}$ • M^2 , $m^2_{\rho} \ll M^2_{\gamma \rho}$
- \triangleright initial state particle momenta: $q^{\mu} = n^{\mu},$ $\rho_1^\mu = \left(1 + \xi\right) \rho^\mu + \frac{M^2}{s(1 + \xi)} \mathsf{n}^\mu$
- final state particle momenta:

$$
p_2^{\mu} = (1 - \xi) p^{\mu} + \frac{M^2 + \vec{p}_t^2}{s(1 - \xi)} n^{\mu} + \Delta^{\mu} \n\Delta
$$

\n
$$
k^{\mu} = \alpha n^{\mu} + \frac{(\vec{p}_t - \vec{\Delta}_t/2)^2}{\alpha s} p^{\mu} + p^{\mu} \n\Delta + \frac{\Delta^{\mu}}{2},
$$

\n
$$
\mu = \mu + (\vec{p}_t + \vec{\Delta}_t/2)^2 + m^2 \mu \n\Delta + \Delta^{\mu} \Delta + \Delta^{\mu}
$$

$$
p_{\rho}^{\mu} = \alpha_{\rho} n^{\mu} + \frac{(p_t + \Delta_t/2)^2 + m_{\rho}^2}{\alpha_{\rho} s} p^{\mu} - p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2},
$$

$$
\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \ \mathcal{T}(x,\xi,z) \ H(x,\xi,t) \ \Phi_{\rho}(z)
$$

- \triangleright z integration performed analytically using an asymptotic or holographic DA.
- ▶ GPD models plugged into expression for amplitude and the integral performed w.r.t. x numerically.
- Differential cross section:

$$
\left.\frac{d\sigma}{dt\,du'\,dM_{\gamma\rho}^2}\right|_{-t=(-t)_{min}}=\frac{|\overline{\mathcal{A}}|^2}{32S_{\gamma N}^2M_{\gamma\rho}^2(2\pi)^3}\,.
$$

► Kinematic parameters: $S_{\gamma N}$, $M_{\gamma \rho}^2$ and $-u'$ Recall: $u' = (p_\rho - q)^2$, $t = (p_2 - p_1)^2$

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 12/22

Results Fully-differential cross-sections:

$$
S_{\gamma N} = 20 \text{ GeV}^2 \text{ at } -t = (-t)_{\text{min}}
$$

 $M_{\gamma \rho}^2 = 3, 4, 5, 6 \text{ GeV}^2$

Results Phase space integration: Evolution in $(-t, -u')$ plane

Results Single differential cross-section: Valence vs Standard:

2 4 6 8 10 0.00 0.05 0.10 replacements $_{\scriptscriptstyle{0.15}}$ 0.20 $M_{\gamma\rho}^2~({\rm GeV^2})$ $d\sigma_{odd}$ $\frac{d\theta}{dM_{\gamma\rho}^2}$ (pb · GeV⁻²) $S_{\gamma N} = 20 \text{ GeV}^2$

Various ansätze for the PDFs Δq used to build the GPD H_T :

- ▶ dotted curves: "standard" scenario
- ▶ solid curves: "valence" scenario
- \blacktriangleright deep-blue and red curves: central values
- \triangleright light-blue and orange: results with $\pm 2\sigma$.

Results Single differential cross-section:

typical JLab kinematics

dashed blue: "standard" one

Results Integrated cross-section: Valence vs Standard:

solid red: "valence" scenario

dashed blue: "standard" one

Results

Fully differential X-section: Holographic DA vs Asymptotical DA: ρ^0_L , Chiral-even

\implies sizable effect, larger than the one due to uncertainties on polarized PDFs

Necessity for Importance Sampling

▶ Need enough points at boundaries for distribution in $(-u')$

 \blacktriangleright Need enough points to resolve peak (at low $M_{\gamma M}^2$) for distribution in $\mathcal{M}_{\gamma \mathcal{M}}^2$

Prospects at experiments

Why counting rates lower UPCs at LHC?

Hol. DA vs Asymp. DA Solid: standard vs Dashed: valence

- ▶ LHC great for high energy, but JLab better in terms of luminosity.
- \triangleright Still, LHC gives us access to the small ξ region of GPDs!

[Accessing GPDs through the exclusive photoproduction of a photon-meson pair with a large invariant mass](#page-0-0) 21/22

Circular asymmetry of incoming photon Why does it vanish for unpolarised target?

Consider

$$
\gamma(q,\lambda_q)+N(p_1,\lambda_1)\to \gamma(k,\lambda_k)+\rho^0(p_\rho,\varepsilon_\rho)+N'(p_2,\lambda_2),
$$

where λ_i represent the helicities of the particles.

QED/QCD invariance under parity implies that [Bourrely, Soffer, Leader]

$$
\mathcal{A}_{\lambda_2\lambda_k\,;\,\lambda_1\lambda_q}=\eta\,(-1)^{\lambda_1-\lambda_q-(\lambda_2-\lambda_k)}\mathcal{A}_{-\lambda_2-\lambda_k\,;\,-\lambda_1-\lambda_q}\;,
$$

where η represents phase factors related to intrinsic spin.

Thus, at the cross-section level, it is clear that circular asymmetry will vanish, since

$$
\sum_{\lambda_i, i\neq q} |{\cal A}_{\lambda_2\lambda_k\,;\,\lambda_1+}|^2=\sum_{\lambda_i, i\neq q} |{\cal A}_{\lambda_2\lambda_k\,;\,\lambda_1-}|^2
$$