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GPD definition

@ Generalised parton distributions (GPDs) are a “byproduct” of factorisation of
amplitudes tor exclusive processes such as deeply-virtual Compton scattering.

-

@ An operator definition of the GPDs in the light-cone gauge (n - A = 0) reads:

dy —'L:c(n ) 7/L _J
A dy yn yn "= P+
FQ/H(x7§7A2):_I(n°P)/27T —zx(nP)y< ( 9 )Aaa (_7)‘P+A>
P+ A P+ A
@ No Wilson line, simpler gluon GPD, more complicated gluon propagator.
1 kuny, + kony,
Pur (k) = 13752 (_g“” T )
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@ l'hese defimtions are aftfected by UV divergences that need to be renormalised.
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GPD evolution

Using dim. reg., the renormalisation of GPDs can be implemented as follows:

Fu(x, &, 1) Z / |y| (- &s(ﬂ)»5> Fym(y,&.¢)

1=4,9
In the MS scheme renormalisation constants have the following structure:
Zij (Zvliao‘& ) _5745 1_Z —I_Z ( ) Z?an] (Zvl{)
p—l

Exploiting the independence ot the bare GPDS on 4, one can derive a RGE:

dF; (3, €, d
a2 - 3 [ Er (L aw) Aynten

dln p Z X

The evolution kernel are finite quantities computable 1n perturbation theory:

o0

n+1
7)z//c (Za'%aas) — Z (%) ’ 732[7/1]]{ (Za ’%)

n=0

They are related to the renormalisation constants Z;. At LO one finds:
0 _ [1,1]
Pz[/]k (Zvﬁ) — ik (27/{)

Bottomline: the computation of the evolution kernels boils down to
computing the GPD renormalisation constants.
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GPD evolution

The Z; renormalisation constants can be computed using parton-in-parton
GPDs, .. GPDs where the fadronic states are replaced by partonic states.

Parton-in-parton GPDs can be perturbatively computed and their pole part
gives the Z; that 1s related to the evolution kernels. At O one finds:

f N
77@.[% (x, ~ )= pole part of Fi[/l;c(x, £, ¢€)

[ TR TR

For example: \% =59 0:59)
] (1+&p—k (1—&p—k
Q, > 5’y
FQ/ q (,8:) M ;
(1+&p (1—=&p

The LO RGE can finally be written in a DGLAP-like fashion:
1 =rya — g u

dF*(x, &) ag(p) [Fdy o €Y px (2
dlng?  dr / Y <y5>F (5’“) (Z o/ Fy

}%Nf

PO (1) =01 - P (0.8 ) vt - )P (u g)

DGLAP region ERBL contribution




GPD gyoglution
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Properties of the kernels

In the limit k — 0 the DGLAP splitting functions are recovered:

i P10 (y, 1) = 0(1 — ) PO (y)

k—0

In the limit k — 1/x the ERBL non-singlet kernel 1s recovered:

1 2t — 1 1 t—1 1 t 1
—(0] — O(u —t — 0t —
2u—173 (2u—1’2t—1> CF[(U )( U +u—t> ( u)<1—u+u—t>]+

with [f(t, )], = f(t,u) — 6(u—t) /O du' f(t.u')

Continuity of GPDs at the crossover point x = & (k = 1) guaranteed:

- +,[0] _ o +,[0]
,};1—>m1 P17 (y, k) = finite Py (y, k) o (1 — k)
Cancellation of spurious divergencies (stable numerical implementation)

lim (1 — /{2y2)o‘771i’[0] (y,k) = — lim (1 — /{2y2)o‘772i’[0] (y, k) = finite

y—r—1 y—sp 1



Properties of the kernels

@ Valence sum rule (polynomiality for the first moment of the non-singlet) conserved:

1 1 §/y
/ deF~ (7,6, 1) =FF = / dz Py (z i)+/ dz P,y (z i) =0
0 0 Yz 0 Yz

@ Asconsequence of the Ji’s sum rule one also finds:

1
/ dex |F (x,& p) + F, (2, & p1)| = constant
0
@ thatleads to:

1 i 7 §/y i g £\
p +,[0] f [0] i / d +,[0] S — 0
A Z 2 _Pqu ( < Uz -+ Pl .Jq < 2 | —+ . < < _P27qq < yz -+ 7)2 .Jq < Uz |
1 i 7 §/y i 5 € ]
Qs PO (L S w0 (& / Qs 5 | P 10] _ 9
/o Z 2z _Pl’qg ( 2, ”z + P, a0 | % vz ) + i zZ 2z _732’(19 2, vz + 772 a0 | % vz )

@ LExplicit computation of conformal moments reveals that Gegenbauer polynomials of rank

3/2 diagonalise the L.LO non-singlet evolution kernel with -independent kernels:

dz <3/2>( ) [0 (5’3 y)_ 0] ~(3/2) <y>
o vyl (Y)Y — g Y
/ 5] 3 £ ¢ e \&
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Numerical setup

The evolution kernels tor unpolarised evolution that we have recomputed are
implemented in APFEL++ and available through PARTONS allowing for LO

GPD evolution in momentum space.

T'he properties of the evolution kernels allowed us to obtain a stable numerical
implementation over the full range 0 £ ¢ < 1:

@ numerical check that both the DGLAP and ERBL limits are recovered,

-

@ numerical check of polynoemiality conservation.

Numerical tests mostly use the MMHT 14 PDF set at LO as an initial-scale set of
distributions evolved from 1 to 10 GeV for the first time 1n the variable-
flavour-number scheme, .c. accounting for heavy-quark-threshold crossing.

Tests have also been performed using more realistic GPD models such as the
Goloskokov-Kroll model based on the Radyushkin

double-distribution ansatz



The DGLAP llmlt

1.0 LO evolutlon from po = 1 GeV to n = 10 GeV LO evolution from pug =1 GeV to p = 10 GeV
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LO evolution from pg =1 GeV to p = 10 GeV
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DGLAP limit reproduced within S — =0

F —— £ =0.05

107 relative accuracy. P e=0s
P S
o 0-15 [ MMHT2014l068c]
@ GPD evolution may significantly ~ Zo.10
B

deviate from DGLAP evolution.

)

T'he evolution generates a cusp at
x = & but the distribution remains
continuous at this point.
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The ERBL limit

@ The limit ¢ — 1 (x — 1/x) should reproduce the ERBL equation.

@ Iti1s well known that in this limit Gegenbauer polynomials decouple
upon L.O evolution, such that:

Fon(w, o) = (1= 2)Cy/ " (2) = Fan(w,p) = exp | -

M _
[ dingias(| Fauo o

Ko

@ where the kernels Vz[g] can be read off, for example, from
or

@ We have compared this expectation with the numerical results for GPD
evolution by setting k = 1/x and using a Gegenbauer polynomial as an

initial-scale GPD.



2

6

The ERBL limit

LO ERBL evolution from pug =1 GeV
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ERBL limit reproduced within less than 107 relative accuracy,

Same accuracy for higher-degree Gegenbauer polynomials.



Conformal-space evolution

@ In order to check that LO GPD evolution (¢ # 0) in conformal space 1s
diagonal 1n a realistic case, we have considered the RDDA:

Hy(w.6,10) = [ d5dad (2~ 6~ €a) a(8)m(5,)

. Q
with:

39 —1/2(1 . 513)3, 7"-(6704) _ §((1 B ‘5’)2 B 042)

Q(:E) = 9o¥ 3
32 4 (118
RDDA conformal moment evolution, =1 GeV
We have evolved the 4th moment: 05— Tt
- p=1GeV 1
C T —_— u =2 GeV
_ 4 ! (3/2) [ X MR T —— =5 GeV
C4 (gvlu) :S dQ?O4 - HQ(ZC7€7:LL) L T pw =10 GeV
—1 € /5:0'3 :F \‘\\— pu = 100 GeV_:
Ny - BRI -
50.2 F
from py = 1 GeV using the (analytic) =t
conformal-space evolution and the :
(numerical) momentum-space £ 1.05 -+
evolution. S1.00 — —
50.95:|...||...|....|....I.||||||||I||||I||||I||||:
Excellent agreement was found. 01 02 03 04 05 06 07 08 09
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Polynomiality
@ GPD evolution should preserve polynomiality.

G

@ The following relations for the Mellin moments must hold at all scales:

1
/dw:can (2, &, 1) = ZA’“
0

n+1

1
/ dxx2”+1F+ (,&, 1) ZBk
0

G

@ Polynomiality predicts that the first moment (n = 0) of the non-singlet distribution
1S constant 1n .

The coefficient of the 2"+% term of the singlet (D-term) is absent in our initial
conditions and 1t 1s not generated by evolution, so that also the first moment of
the singlet is expected to be constant in ¢.

&

For the other values of 7 one can just fit the behaviour in ¢ and check that it

¢

follows the expected power law.



Polynomiality

LO evolution from py =1 GeV to p = 10 GeV
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LO evolution from py =1 GeV to p = 10 GeV
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@ First moment for both singlet and non-singlet is indeed constant in ¢:

-

@ this was expected and the expectation 1s very nicely fulfilled.

Second and third moments follow the expected law:

-

@ B

n

@ 1ncluding odd-power terms in the fit gives coethicients very close to zero.

.1 1n the singlet 1s consistently found to be compatible with zero (no D-term).




Polynomiality

10 LO evolution from gy = v/2 GeV to p = 10 GeV
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LO evolution from py = v/2 GeV to u = 10 GeV
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@ First moment for both singlet and non-singlet is indeed constant in ¢:

@ this was expected and the expectation 1s very nicely fulfilled.

-

s

@ B

n

Second and third moments follow the expected law:
including odd-power terms 1n the fit gives coethicients very close to zero.

.1 1n the singlet 1s consistently found to be compatible with zero (no D-term).
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Ratio to APFEL++

APFEL vsS. Vlnnlkov S code

LO evolutlon from ,u,o =2 GeV to B = 10 GeV t = —0 1 G‘reV2
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Excellent agreement between the

two code for & < 0.6.

Agreement deteriorates for £ 2 0.6:

@ discrepancy larger for the singlets
(~20%b) than for the non-singlet (~1%o).

@ possible numerical instabilities of
Vinnikov’s code?
@ Inability to check the ERBL limat.
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LO evolutlon from uo =2 GeV to p= 10 GeV t = —0 1 G‘reV2
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Conclusions and outlook

@ We have revisited LO GPD evolution in momentum space:

@ Ab-uuto calculation of the LO unpolarised splitting kernels based on Feynman diagrams
in light-cone gauge.

@ GPD evolution equations recasted in a DGLAP-like form convenient for implementation.
@ Various analytical properties of the kernels highlighted and numerically checked.
@ DGLAP and ERBL limits correctly recovered within excellent accuracy.
@ Lvolution conserves polynomiality and agrees with conformal-space evolution.
@ the code (APFEL@++) is public and available within PARTENS
https://github.com/vbertone/apfelxx [ E H \
http://partons.cea.fr/partons/doc/html/index.html
@ Next steps:

@ short term: calculation/implementation of polarised (long. and trans. (?)) evolutions,
@ middle term: benchmark of the public evolution codes (discussion already started),

@ longer term: (re)calculation and implementation of the NLLO corrections.


https://github.com/vbertone/apfelxx
http://partons.cea.fr/partons/doc/html/index.html
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Numerics: polynomiality

LO evolution from o = v/2 GeV to u = 10 GeV
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First moment for both singlet and non-singlet is constant in ¢:
@ this was expected and the expectation 1s very nicely fulfilled.
Second moments follow the expected law:

@ 1ncluding odd-power terms in the fit gives coethicients very close to zero.

-

@ B, 1n the singlet 1s consistently found to be compatible with zero (no D-term).
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On the calculation of Py at LO

@ In light-cone gauge, there 1s one single real diagram:

[ =\ [ g™ O\ ﬁ»[ll,(g“”)(m £ = MEC 1 12 d*~*kr K2
72 20 ©aa 5 2 - n)E )" ) @mrT
+00 —
(1+&p—k (1—&p—k y / A .
o 5.0 —oo (k7 =k )(k™ — k3 )(k™ —k3)
k 2 2 2
R - . . S L
14 e Ay T aapr T B T gy TR R =g gy O,
@ Pole structure:
AIm(k™) A Im(k™)
x < & x > &
ky ks ky
X X X
>) ‘)
X X Re(k™) X Re(k7)
ks ky ki




On the calculation of Pyq at LO

@ The real diagram gives:

F0ar@8 = Fioyyy @8+ Fg)y, @8

V1= € [+ -z +2%) (-1 -z - 2) i
e R e A e T

@ |'he virtual contribution can be computed using the sum rule.

@ Including the virtual diagram and isolating the UV divergence gives:

(z - &)(1 -z — 2¢)
1-¢

1 [(:L'+§)(1—:1:+2§)

1 —x) 1+¢ ~ @ =¢)

ché](l'@) = 2CF{ 2

- (1-u2) [/Oldzl P2 (1 - €2)

1—2
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