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vation

o Generalized parton distributions (GPDs) reveal interesting facts about nucleon structure,
such as 3d-tomography and orbital angular momentum in terms of its constituents.

o Deeply virtual Compton scattering (DVCS) is the golden process to extract GPDs from data.

@ Radiative corrections to exclusive processes such as DVCS are known to be substantial.
NNLO is required for good precision of the GPD extraction from data.
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Deeply Virtual Compton Scattering

DVCS
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Figure: Handbag approximation
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(Iight—cone coordinates with respect to n = —q + (1 — ﬁ)q’, n = ¢/, following [V. Braun,

A. Manashov, B. Pirnay, 2012])
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Coefficient function

@ The hadronic part of the DVCS scattering amplitude is parametrized in terms of the
Compton form factors (CFFs). Leading twist: H,E,H, E.

o H gives generally dominant contribution to observables, e.g. opycs o ¢2|H|? at small &.

o CFFs factorize in terms of GPDs, e.g.
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The contribution from Cé2) and 052) are subject of this talk.
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Properties of CF

o CF depends only on the ratio /&, not  and & individually.
e Cy is antisymmetric, Cy is symmetric, (reversed for axial-vector case).

@ Poles and protruding branch cuts at |z/&| = 1. |z/€| > 1 DGLAP region, |z/£] < 1 ERBL
region.

x/&

DGLAP  ERBL DGLAP

@ To be evaluated on the branch corresponding to the £ — £ — 0 prescription (consequence of
Feynman pole prescription)

J. Schonleber (Regensburg)

Two-loop coefficient function for DVCS

October 27, 2022 6/20



Calculation using Feynman diagrams, main computation

@ Many diagrams are trivially related by crossing symmetry. Need to calculate ~ 70 diagrams
which are not trivially related.

o Standard procedure (combined with in-house routine in Mathematica):
= Graph generation (qgraf)
= Apply Feynman rules and trace projection (FORM)
= Integration-by-parts reduction (FIRE) to 12 (scalar) master integrals
= Calculation of master integrals using method of differential equations and Mellin-Barnes
representation. Fortunately there have been no new master integrals other than the ones
appearing in the non-singlet case, they have been calculated in [J. Gao, T. Huber, Y. Ji,
Y-M. Wang, 2021].

o Most complicated Master (p? = ¢'2 =0, ¢' - p = Q2/2)

q—2p 2p
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Calculation using Feynman diagrams, infrared subtractions

o Need to calculate also “Infrared subtractions” (relevant starting at two-loop), which involve
convolution of CF (including ¢! terms) with Z-factor (< get from evolution kernel [V.
Braun, A. Manashov, S. Moch, M. Strohmaier, 2019]), e.g.
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gives a finite contribution to the CF.

o All infrared singularities have to cancel such that the CF is finite
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finite IR divergent
where LHS and RHS are considered renormalized.
@ There is mixing between quark and gluon terms = a highly non-trivial check!

@ Convolutions have been calculated in position space using HyperInt.
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Calculation using conformal symmetry

@ QCD in non-integer d = 4 — 2¢, space-time dimensions enjoys conformal invariance at the
special fine-tuned value of the coupling (Wilson-Fisher fixed point), where

2
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o If conformal symmetry holds one can use the conformal OPE [Miiller, 1995] to show that
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N,even P
’ local conformal known function in terms of

operators OPE coefficients in DIS anomalous dimension of the O nr
(known to N3LO)

o Strategy: Compare the conformal OPE for Hys to the factorized form

1
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H is a matrix element of light-ray operator O(z1, z2). Also expand O in terms of local
conformal operators O

O(1,22) = Y Wiz, 22)(0) O (0).
Nk
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Calculation using conformal symmetry

o Coefficients W n (21, 22) ~ S_’f_(zl — 22)V can be written in terms of generator of conformal
transformations in 4 direction

~~ —_——
evolution
kernel

1
Sy =220, + 220., + (21 + 22) (2—6+2 H + (21— 22)A4

"conformal anomaly"

o Can get rid of conformaly anomaly term by going to conformal scheme (CS)
0O—-0=U0, Cc—-C=cUu

where U can be determined order by order from A .

o Get CF in CS C essentially from forward case (DIS). To translate back to MS scheme one
needs A at the same order.

o Two-loop non-singlet A, is known and we calculated Cys in MS using this approach. Later
we confirmed this result from the Feynman diagrams. Two-loop singlet A is not known at
this point.
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Conformal scheme vs MS scheme

o One can also work entirely in the CS. Approach used in [K. Kumericki, D. Mueller, K.
Passek-Kumericki, 2007] to get NNLO predictions for DVCS. This has some advantages
— Do not need to calculate conformal anomaly, so can get C actually to N3LO at this point
— Evolution of GPD is much simpler due to absence of A .

@ However, the interpretation of the GPD in the CS is less clear. Most people want to make
models for GPDs in MS-scheme.

o One can translate between CS and MS but conformal anomaly A, at the same order is
needed. In addition to A being not completely known to NNLO at this point, the
translation is a very complicated calculation.
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Explicit expression

w=Q, H;; . = H,;;. (z) harmonic polylogarithms.

CP (w/€) = e2Cns(w/€) + | > €2 | TrCr (2)
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Explicit expression

nw=Q, H;; . =H,;;j. . (z) harmonic polylogarithms.
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Explicit expression

nw=Q, H;; . =H,;;j. . (z) harmonic polylogarithms.
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Plots of CF
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Sample GPD model
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Figure: u-quark and gluon GPDs with PDF parameters fitted from ABMP16 NNLO PDFs

o We used the standard double distribution ansatz, same as in [S. Goloskokov, P. Kroll, 2006]
(D-term is neglected)

F(B,a,t) = e /10D £(8)n(8, o)
H(z,¢,t) =/ dadB F(8,a,t)0(z — B — &a),
{lal+[BI<1}
where f is the PDF and h is some profile function.
o Refited the parameters to HERA20PDF and ABMP16 PDF data. We used LO/NLO/NNLO

PDFs for LO/NLO/NNLO convolution in 7. We find essentially the same behaviour with
ABMP and HERA.
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Size of correction to CFF # to quarks and gluon separately

HERA20 PDF parameters, t = —0.1 GeV2, ;ﬂ =Q%2=4 GeV2
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o Quark and gluon CF have opposite sign while quark and gluon GPDs are (mainly) positive
= Quark and gluon contributions have opposite sign (at the input scale)
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Size of correction to CFF H

HERA20 PDF parameters, t = —0.1 GeV?, p2 = Q2 = 4 GeV?

£Re H(E, @2 = 4 GeV?)
£1m H(E, QF = 4 GeV?)

5.x1074 0.005 0.050 0.500

Get interesting effects from the cancellation of quark and gluon contributions:

@ NNLO correction to real part is very small

@ NNLO correction to imaginary part is enhanced (H is decreased) compared to only quarks.
Numerical example for & = 0.005:

45 + 2327 —28 — 1771 = 17 + 55¢
—_—— ——  ——

Hutdts Hg H
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Evolution effects

HERA20 PDF parameters, £ = 0.005, t = —0.1 GeV2, Q2 dependence without resummation
(only up to a?)

0,005 Re (¢ = 0.005, Q%)

Total NLO Total NNLO

0.005 Re (¢ = 0.005, Q%)
0.005 Re (¢ = 0.005, Q%)

Totl NNLO

-~ Quarks

Gluon

log Q2 /u? terms in gluon CF are positive
= Gluon contribution to real and imaginary part becomes positive as Q2 increases
= No more cancellation at higher Q2.
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Conclusion and Outlook

o We have calculated the two-loop vector singlet CF for DVCS in the MS scheme using
computer algebra methods for calculating the Feynman diagrams.

@ Size of NNLO radiative corrections to the imaginary part are sizeable.

@ Including three-loop evolution is needed to complete NNLO — three-loop non-singlet known
[V. M. Braun, A. N. Manashov, S. Moch, M. Strohmaier, 2017], for three-loop singlet first
eight moments know [V. M. Braun, K. G. Chetyrkin, A.N. Manashov, 2022]. Solving the
evolution equations is a difficult task. Public computer code exists only for one-loop
evolution [A.V. Vinnikov, 2006][Bertone et al., 2022].

@ Possible near future extensions:
— calculate two-loop axial singlet CF,
— calculate ~ ny contribution of three-loop to estimate size of N3LO correction,
— make public computer code for NNLO predictions of leading twist DVCS, e.g. in
PARTONS software framework.
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