
https://root.cern

ROOT
Data Analysis Framework

TMVA Fast Inference System (SOFIE)
ICHEP 8.07.2022
Sitong An, Ahmat Hamdan, Lorenzo Moneta, Sanjiban Sengupta, Federico Sossai,
Aaradhya Saxena, Neel Shah
presented by Enrico Guiraud

https://root.cern

Motivation
▶ ML ecosystem focus mainly on training the models
▶ Deployment of models (inference) is often neglected
▶ Tensorflow/PyTorch have functionality for inference

▶ can run only for their own models
▶ usage in C++ environment is cumbersome
▶ requires heavy dependence

▶ A new standard exists for describing deep learning models
▶ ONNX (“Open Neural Network Exchange”)

▶ ONNXRuntime: a new efficient inference engine based by Microsoft
▶ large dependency
▶ can be difficult to integrate in HEP ecosystem

▶ control of threads, used libraries, etc..
▶ not optimised for single event evaluation

2

Introduction

A new idea for Inference Code Generation

▶ An inference engine that…
● Input: a trained ML model file

■ using ONNX :
■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras (tf2onnx)

● Output: Generated C++ code that hard-codes the inference function
■ Easily invokable directly from other C++ project (plug-and-use)
■ Give users full control of the inference code
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit
3

Parsing input models

▶ Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("model.onnx");

▶ Parser exists also for (with more limited support)
▶ Native PyTorch files (model.pt files)

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

▶ Native Keras files (model.h5 files)
 SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

4

Code Generation

▶ Code Generation: from RModel to a C++ file (model.hxx)  
and a weight file (model.dat)

// generate text code internally (with some options)
model.Generate();
// write output header file and data weight file
model.OutputGenerated();

▶ Generated code has minimal dependency
▶ only linear algebra library (BLAS)
▶ no dependency on ROOT libraries
▶ can be easily integrated in whatever software code

5

namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename = "Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code

Using the Generated code

▶ SOFIE generated code can be easily used in compiled C++ code
#include “ModelName.hxx”
// create session class
TMVA_SOFIE_ModelName::Session s();
//—- event loop
…….
{
 // evaluate model: input is an array of type float *

auto result = s.infer(input);
}

▶ Code can be compiled using ROOT Cling and used in C++ interpreter or Python
import ROOT
compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “ModelName.hxx”’)
create session class
s = ROOT.TMVA_SOFIE_ModelName.Session()
#—- event loop
…….
 # evaluate the model , input can be a numpy array of type float32
 result = s.infer(input)

6
See full Example tutorial code

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

RDF Integration

▶ SOFIE Inference code provides a Session class with this signature:
vector<float> ModelName::Session::infer(float* input);

▶ RDF Interface requires a functor with this signature:
T FunctorObj::operator()(T x1, T x2, T x3,….);

▶ We have developed a generic functor adapting SOFIE signature to the RDF one

▶ Support for multi-thread evaluation, using RDF slots
 
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D("DNN_Value");

7See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

ONNX Supported Operators

8

Gemm Implemented and integrated (ROOT 6.26)

Activations: Relu, Seul, Sigmoid, Softmax, LeakyRelu Implemented and integrated

Convolution (1D, 2D and 3D) Implemented and integrated

RNN, GRU, LSTM Implemented and integrated

BatchNorm Implemented and integrated

Pooling: MaxPool, AveragePool, GlobalAverage Implemented and integrated

 Layer operations: Add, Sum, Mul, Div, Reshape, Flatten,
Transpose, Squeeze, Unsqueeze, Slice, Concat, Identity Implemented and integrated

InstanceNorm Implemented but to be integrated (PR #8885)

Deconvolution, Reduce operators (for generic layer
normalisation), Gather (for embedding)

Planned for next release

??? Depending on user needs

Benchmark: Dense Model

9

10 Dense 
 layers

Benchmark with RDF

▶ Test on a Deep NN (from TMVA_Higgs_Classification.C
tutorial, 5 FC layers of 200 units)

▶ Run on dataset of (5M events)
▶ Single Thread, but can run Multi-Threads

10
DNN Model(5 layers of 200)0

50

100

150

200

250

300

310×

Pr
oc

es
se

d
Ev

en
ts

/s
ec SOFIE

ONNXRuntime
LWTNN

Ubuntu 20.04 Intel 5000MHz

La
rg

er
 =

 B
et

te
r

https://root.cern.ch/doc/master/TMVA__Higgs__Classification_8C.html

Benchmark: Different Models (on Linux PC)

▶ Test Event performance of SOFIE vs ONNXRuntime (BS=1)

11

Sm
al

le
r =

 B
et

te
r

Dense FastSim Conv2D Conv3D Resnet LSTM GRU DDB0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz

Future Plans

▶ Implement some missing operators:
▶ Deconvolution, etc..
▶ more depending on user needs and feedback

▶ Implement same model optimisations:
▶ layer fusions, quantisations,….

▶ we are in contact with hls4ml project for collaborating
▶ Generate code for different architectures (e.g GPU)

▶ Investigate extensions to parse and generate code for graph models
(GNN)
▶ not supported by ONNX , will parse directly saved models

12

Summary

▶ First release of SOFIE, fast and easy to use inference
engine for ML models, is available in ROOT 6.26

▶ Good performance compared to existing package
(ONNXRuntime) and LWTNN
▶ further optimisations are still possible

▶ Integrated with other ROOT tools to evaluate models in user
analysis: RDataFrame

▶ Any future developments will be done according to user
needs and the received feedback!

13

Example Notebooks

▶ Some example notebooks on using SOFIE:
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Some tutorials are also available in the tutorial/tmva directory 

14

https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html

Conclusion

▶ Link to SOFIE in current ROOT master
▶ Link to SOFIE notebooks
▶ Link to benchmark in rootbench (PR #239)
▶ Link to previous benchmark sample code  

 
 
 
 
 

15

The presenter gratefully acknowledges the support of the Marie Skłodowska-Curie Innovative Training
Network Fellowship of the European Commission Horizon 2020 Programme, under contract number
765710 INSIGHTS.

https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://github.com/root-project/rootbench/pull/239
https://github.com/sitongan/sofie_benchmarking

