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Motivation
▶ ML ecosystem focus mainly on training the models
▶ Deployment of models (inference) is often neglected
▶ Tensorflow/PyTorch have functionality for inference

▶ can run only for their own models
▶ usage in C++ environment is cumbersome
▶ requires heavy dependence

▶ A new standard exists for describing deep learning models
▶ ONNX (“Open Neural Network Exchange”)

▶ ONNXRuntime: a new efficient inference engine based by Microsoft
▶ large dependency
▶ can be difficult to integrate in HEP ecosystem 

▶ control of threads, used libraries, etc..
▶ not optimised for single event evaluation
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Introduction

A new idea for Inference Code Generation

▶ An inference engine that…
● Input: a trained ML model file

■ using ONNX : 
■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras (tf2onnx)

● Output: Generated C++ code that hard-codes the inference function
■ Easily invokable directly from other C++ project (plug-and-use)
■ Give users full control of the inference code 
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit
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Parsing input models

▶ Parser: from ONNX to  SOFIE::RModel class 
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser; 
RModel model = parser.Parse("model.onnx"); 

▶ Parser exists also for (with more limited support)
▶ Native PyTorch files (model.pt files) 

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

▶ Native Keras files (model.h5 files)
         SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");
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Code Generation

▶ Code Generation: from RModel to a C++ file (model.hxx)  
and a weight file (model.dat) 

// generate text code internally (with some options)
model.Generate();  
// write output header file and data weight file
model.OutputGenerated(); 

▶ Generated code has minimal dependency 
▶ only linear algebra library (BLAS)
▶ no dependency on ROOT libraries
▶ can be easily integrated in whatever software code
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namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
   if (filename.empty()) filename = "Linear_event.dat";
   std::ifstream f;
   f.open(filename);
   // read weight data file
   …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code



Using the Generated code

▶ SOFIE generated code can be easily used in compiled C++ code
#include “ModelName.hxx”
// create session class
TMVA_SOFIE_ModelName::Session s();
//—- event loop
…….
{
   // evaluate model: input is an array of type float *

auto result = s.infer(input);
}

▶ Code can be compiled using ROOT Cling and used in C++ interpreter or Python
import ROOT
# compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “ModelName.hxx”’)
# create session class
s = ROOT.TMVA_SOFIE_ModelName.Session()
#—- event loop
…….
  # evaluate the model , input can be a numpy array of type float32 
  result = s.infer(input)  
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See full Example tutorial code

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html


RDF Integration

▶ SOFIE Inference code provides a Session class with this signature:
vector<float> ModelName::Session::infer(float* input);

▶ RDF Interface requires a functor with this signature: 
T FunctorObj::operator()(T x1, T x2, T x3,….);

▶ We have developed a generic functor adapting SOFIE signature to the RDF one

▶ Support for multi-thread evaluation, using RDF slots
 
auto h1 = df.DefineSlot("DNN_Value", 
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D("DNN_Value");

7See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html


ONNX Supported Operators
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Gemm Implemented and integrated (ROOT 6.26)

Activations: Relu, Seul, Sigmoid, Softmax, LeakyRelu Implemented and  integrated

Convolution (1D, 2D and 3D) Implemented and integrated

RNN, GRU, LSTM Implemented and integrated

BatchNorm Implemented and integrated

Pooling: MaxPool, AveragePool, GlobalAverage Implemented and integrated

 Layer operations: Add, Sum, Mul, Div, Reshape, Flatten,  
Transpose, Squeeze, Unsqueeze, Slice, Concat, Identity Implemented and integrated

InstanceNorm Implemented but to be integrated ( PR #8885)

Deconvolution, Reduce operators (for generic layer 
normalisation), Gather (for embedding)

Planned for next release

??? Depending on user needs



Benchmark: Dense Model
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Benchmark with RDF

▶ Test on a Deep NN (from TMVA_Higgs_Classification.C 
tutorial, 5 FC layers of 200 units)

▶ Run on dataset of  (5M events)
▶ Single Thread, but can run Multi-Threads
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Benchmark: Different Models (on Linux PC)

▶ Test Event performance of SOFIE vs ONNXRuntime (BS=1) 
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Future Plans

▶ Implement some missing operators:
▶ Deconvolution, etc..
▶ more depending on user needs and feedback

▶ Implement same model optimisations: 
▶ layer fusions, quantisations,….

▶ we are in contact with hls4ml project for collaborating
▶ Generate code for different architectures (e.g GPU)

▶ Investigate extensions to parse and generate code for graph models 
(GNN)
▶ not supported by ONNX , will parse directly saved models 
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Summary

▶ First release of SOFIE, fast and easy to use inference 
engine for ML models, is available in ROOT 6.26

▶ Good performance compared to existing package 
(ONNXRuntime) and LWTNN
▶ further optimisations are still possible

▶ Integrated with other ROOT tools to evaluate models in user 
analysis: RDataFrame 

▶ Any future developments will be done according to user 
needs and the received feedback!
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Example Notebooks

▶ Some example notebooks on using SOFIE: 
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Some tutorials are also available in the tutorial/tmva directory 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https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html


Conclusion

▶ Link to SOFIE in current ROOT master
▶ Link to SOFIE notebooks
▶ Link to benchmark in rootbench (PR #239)
▶ Link to previous benchmark sample code  

 
 
 
 
 

15

The presenter gratefully acknowledges the support of the Marie Skłodowska-Curie Innovative Training 
Network Fellowship of the European Commission Horizon 2020 Programme, under contract number 
765710 INSIGHTS.


https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://github.com/root-project/rootbench/pull/239
https://github.com/sitongan/sofie_benchmarking

