

Recent microscopy at CERN

Enrique Rodríguez Castro

Microscopy at CERN	Introduction	Equipment	OM	
			SEM	
			FIB-SEM	
Microscopy for CLIC	Production	Machining		
		Pollution		
	RF and DC Studies	Post-mortem	CLIC-AS	Crab cavity
				T24 Open
			LES	Materials tests
				Cameras
				Size vs Gradient

Microscopy at CERN	Introduction	Equipment	OM	
			SEM	
			FIB-SEM	
Microscopy for CLIC	Production			

Microscopy at CERN

MME Mechanical & Materials Engineering

Experiments and projects

- CERN experiments (Grey Book)
 - CERN Neutrino Platform
- AEGIS CLIC
- ALICE

ACE

- ASACUSA
- ATLASATRAP
- AWAKE
- CAST
 - ELENA
 - FCC

DIRAC

CLICdp

CLOUD

CNGS

CMS

COMPASS

- GBAR
- HL-LHC NA64
- HiRadMat nTOF
- ISOLDE PBC
- LHCb SHiP
- LHCf TOTEM
- LIU project UA9
- MoEDAL WLCG
- NA61/SHINE
- NA62

Optical Microscopes

CERN

StereoMicroscope: M205C by LEICA

Objectives	
Resolution	Max. 1,050 lp/mm
Magnification	7.8×–1,280×
Object field	Max Ø 59mm
Field Optics Illumination	Bright Field (BF), Dark Field (DF), Single- Side Dark Field with Rotterdam contrast and Constant Color Intensity Control (CCIC)

Digital microscope: VHX 1000E by KEYENCE

Features	
Resolution	2-6 million pixels: 1600 (H) x 1200 (V) ≈ 1000 TV lines
	8 million pixels: 3200 (H) x 2400 (V) ≈ 1600 TV lines
	18-54 million pixels: 4800 (H) x 3600 (V) ≈ 2000 TV lines
High dynamic Range (HDR)	16-bit resolution through RGB data from each pixel
Magnification	1-1000x
Field Optics Illumination	*DF, *BF, *PL and *DIC

Optical Microscope: AxioImager by ZEISS

Performances	
Resolution	At 1296 X 968 Resolution of 3 Frames/S
	At 430 X 322 Resolution of 11 Frames/S
	At 258 X 193 Resolution of 16 Frames/S
Magnification	12.5 – 1,500x
Field Optics	Dark Field (DF), Bright Field (BF), Polarized light (PL),
	Differential Interference-Contrast (DIC)
Software	
AxioVision & Zenco	ore (New version)

Electron microscopy

Scanning Electron Microscope (SEM) ΣIGMA by ZEISS

Performance	
Resolution	1.2 nm at 30kV
Acceleration Voltage	0.1 – 30kV
Magnification	12 – 500,000x
Specimen, Chamber and Stage	9
Stage Movement range	5 motorized axes: X,Y,Z,T and R
	X and Y: ≥ 125 mm; Z: ≥ 50 mm
	T: 0° to 90°; R: 360°
Maximum specimen Weight	Up to 0.5 kg (tilted) and 2.0 kg (not tilted)
Chamber Internal Dimensions	365 mm diameter x 275 mm high

Focused Ion Beam (FIB) XB540 by ZEISS

SEM Performance	
Column	Crossbeam 540 (Gemini [®] II column)
Resolution	High resolution configuration: 0.7 nm at 30 kV
Acceleration Voltage	0.02 - 30 kV
Magnification	12x - 2,000,000x

FIB Performance	
Source	Gallium Ion
Resolution	3nm at 30kV
Acceleration Voltage	0.5 – 30 kV
Magnification	300x - 500,000x

Fatigued (83% LT)

- Broadening of the distribution ۲
- Shift to higher value •
- **Higher dispersion**

Fatigued (100% LT)

- Strong broadening of the distribution
- Shift to even higher value

Microscopy at CERN	Introduction			
Microscopy for CLIC	Production	Machining		
		Pollution		
	RF and DC Studies	Post-mortem	CLIC-AS	Crab cavity
				T24 Open
			LES	Materials tests
				Cameras
				Size vs Gradient

Microscopy at CERN	Introduction		
Microscopy for CLIC	Production	Machining	
		Pollution	

MeVArc 2018

Enrique Rodriguez Castro

Machining qualification

- Important to feedback company
 - Improvement on machining process
 - Correction of errors (before finishing the manufacturing)

First observation

First observation

Pollution Analysis

- A particle on surface could be the origin of a BD.
- Reduce the contamination on structures is crucial.
- Procedure for furnace qualification (including CERN new oven).

ERI

• Witness disc to trace back if any problem is encountered

APA (Automated Particle Analysis)

- Possibility to create custom classification
 - Ignore non important SOI
 - Enhance those with dangerous contaminants

- Shape recognition.
- From qualitative to quantitative

	ΑΡΑ	Manual
Number of analysed particles	21 290	50
Number of classified particles	20 225	/
% of fitting	95 %	/

Microscopy at CERN	Introduction			
Microscopy for CLIC	Production			
	RF and DC Studies	Post-mortem	CLIC-AS	Crab cavity
	RF and DC Studies	Post-mortem	CLIC-AS	Crab cavity T24 Open
	RF and DC Studies	Post-mortem	CLIC-AS	Crab cavity T24 Open Soft / hard Cu
	RF and DC Studies	Post-mortem	CLIC-AS	Crab cavity T24 Open Soft / hard Cu Cameras

Post-mortem: CLIC-AS

- Not camera system on AS as we do have in DC
- Only solution to know the BD distribution, position and amount of affected surface

Crab cavity

 BD correspondence with the highest E-field on the cell

- More BD accumulation on nose than center or straight part of the iris, matching the E-field
- BD trend to accumulate in E_max

Microscopy at CERN				
Microscopy for CLIC				
	RF and DC Studies	Post-mortem		
			LES	Materials tests
				Cameras
				Size vs Gradient

Large Electrode System (LES) CERN

- SS anode tested against 2 different cathode:
 - 1. CuAg
 - 2. Fired vacuum Cu

50µm

Enrique Rodriguez Castro

Enrique Rodriguez Castro

- □ find the position of BDs
- □ find how crater after BD relates to the next BD location.

 Image compose of High Quality images

Large Electrode System (LES)

 Combining this techniques we can validate the positioning of the cameras

CERN

- Number of breakdowns detected by Marx generator: 5690
- Number of breakdowns detected by cameras: 5665
- Difference in data: ~0.5%.

Conclusion It works!

Large Electrode System (LES)

- Is there a relation between the size of the craters and the voltage supplied when they occurred?
- Data analysis:
 - Cameras allow to identify single breakdowns locations and voltage
 - Microscope to measure the size

- Measure in OM and SEM
- Average of 60 μ m diference in diameter

Observations and measurements by Francois-Xavier Greffoz

Conditioning curve n12

C

Mag = 200 X Enrique Rodriguez Castro

20 µm (CERN)

EHT = 20.00 kV WD = 15.5 mm Sample ID = LES n12 up Signal A = SE2

Date :11 May 2018 (CERN) Mag = 200 X Enrique Rodriguez Castro

Large Electrode System (LES)

 Preliminary results show that crater size increase with surface electric field

Large Electrode System (LES)

 Preliminary results show that crater size increase with surface electric field

Summary

- Post mortem on RF and DC important tool on BD understanding
- Constantly adding equipment and tools
 - FIB-SEM → cross section and lamellas
 - APA \rightarrow pollution analysis
 - Cameras → BD positioning not only in space but also in time
- CLIC-AS: BD accumulation on max E_field regions
- LES: BD size relation to surface electric field

Thank you for you attention

100 µm	EHT = 20.00 kV	Sample ID = G02-1_	Enrique Rodriguez Castro	
	WD = 10.0 mm		Date :7 Nov 2016 EN	
	Signal A = SE2	Stage at T = 0.0 °	Mag = 200 X	

Recent microscopy at CERN

Enrique Rodríguez Castro

EXTRA SLIDES

LES Post-Mortem

- This system allow us to FIB in well know regions
 - Reference surface \rightarrow surface that has not suffer a BD
 - BD site \rightarrow surface that has suffer a BD
 - Follow up site \rightarrow surface that has suffer multiple BD

Cross-section: Hard Cu 2 BD

