

ALICE 3

Sanghoon Lim for the ALICE Collaboration

Pusan National University

ALICE

• Central Barrel: tracking, particle ID, and EM calorimetry ($|\eta|$ <0.9)

arXiv:2211.04384

- Forward muon arm $(2.5 < \eta < 4.0)$
- Major upgrades in LS2: New inner tracking system, forward muon tracker, and TPC upgrade

ALICE in the future

- FoCal
 - FoCal-E: 20 layers of W(3.5 mm≈1X₀)+Si sensors
 Two sensor types: pad and pixel (ALPIDE)
 - FoCal-H: conventional metal-scintillator sampling calorimeter
 - Parton distributions in protons and nuclei with photons and jets at forward rapidity

- ITS3
 - Replacement of 3 innermost layers of ITS2
 with curved wafer-scale silicon sensors
 - low material budget: 0.05% X₁ per layer
 - Improved tracking precision and efficiency at low $p_{\rm T}$

ALICE in the future

- Heavy-ion physics at the LHC beyond Run 4
 - Parton transport: high-precision beauty measurements
 - Formation of hadrons: multi-charm baryons, P-wave quarkonia, exotic hadrons
 - Bulk and shear viscosity: azimuthal asymmetry of electromagnetic radiation
 - Chiral symmetry restoration: low mass dileptons
 - Collectivity in small systems: high event rates and a large acceptance

ALICE in the future

- ALICE 3
 - Next-generation heavy-ion experiment:
 first ideas at Heavy-Ion town meeting 2018
 (arXiv:1902.01211)
 - Letter of Intent: very positive feedback from the LHCC in Mar. 2022 and recommended proceeding with R&D

System	$\mathscr{L}^{\mathrm{month}}$	\mathscr{L}^{Run5+6}
pp	$0.5{\rm fb^{-1}}$	$18 {\rm fb^{-1}}$
pp reference	$100{\rm pb^{-1}}$	$200 pb^{-1}$
A-A		
Xe-Xe	$26nb^{-1}$	$156{\rm nb}^{-1}$
Pb–Pb	$5.6{\rm nb}^{-1}$	$33.6\mathrm{nb}^{-1}$

ALICE 3: Detector Overview

- Compact and large acceptance
 - $|\eta| < 4$ and $p_T > 0.02$ GeV/c
- Superconducting magnet system
 - Maximum field: B=2 T
- All silicon-based large acceptance tracker
 - ~10% X₀ overall material budget
 - ~10 μ m pointing resolution at p_T ~200 MeV/c
- Particle identification in a wide p_T and η range
 - Silicon-based TOF and RICH
 - Muon identification
- Continuous readout and online processing

ALICE 3: Vertex Detector

- In vacuum, retractable, tracker (3 layers + 3 disks)
- Wafer-size sensors based on CMOS Monolithic Active Pixel Sensors (MAPS) technology
- Extremely low material budget
 - $-0.1\% X_0$ per layer
- Pixel pitch of $\sim 10 \,\mu\text{m}$ for $\sim 2.5 \,\mu\text{m}$ intrinsic resolution

ALICE 3: Outer Tracker

- 8 layers and 9 disks based on MAPS
 - Total of ~67m² of silicon
 - Compact design (R<80 cm, |z|<4 m)
- Pixel pitch of \sim 40 μ m for \sim 10 μ m intrinsic resolution
- 1% X₀ per layer
- Low power: ~20 mW/cm²

0	1	2	3	4
		η		

Layer	Material	Intrinsic	Barrel l	ayers	Forward d		
	thickness (%X ₀)	resolution (µm)	Length (±z) (cm)	Radius (r) (cm)	Position (z) (cm)	R _{in} (cm)	R _{out} (cm)
0	0.1	2.5	50	0.50	26	0.50	3
1	0.1	2.5	50	1.20	30	0.50	3
2	0.1	2.5	50	2.50	34	0.50	3
3	1	10	124	3.75	77	5	35
4	1	10	124	7	100	5	35
5	1	10	124	12	122	5	35
6	1	10	124	20	150	5	80
7	1	10	124	30	180	5	80
8	1	10	264	45	220	5	80
9	1	10	264	60	279	5	80
10	1	10	264	80	340	5	80
11	1				400	5	80

ALICE 3: Tracking Performance

Tracking efficiency

Impact parameter resolution

Primary vertex resolution

Secondary vertex residual

Strangeness tracking

ALICE 3: Time-of-Flight

- 2 barrel layers ($|\eta|$ <1.75)
 - Inner TOF at r=19 cm (surface: 1.5 m²)
 - Outer TOF at r=85 cm (surface: 30 m²)
- 2 forward layers $(1.75 < |\eta| < 4)$
 - R_{in} =15 cm and R_{out} =150 cm, z= \pm 405 cm
- Silicon timing sensors
 - Baseline: CMOS sensor with gain

Performance of the outer TOF in Xe-Xe

ALICE 3: RICH

- Cherenkov detector to complement the TOF system for higher p_T reach
- 2 cm thick aerogel tile and photo-detection layer (SiPMs) at 20 cm from the radiator
 - n=1.03 at barrel and n=1.006 at forward
 - Total area of SiPM: ~60 m²

ALICE 3: PID Performance

Kinematic region in which particles can be separated by at least 3σ

Purity of pions, kaons, and protons in Pb-Pb with a 3σ cut

ALICE 3: Additional particle identification

- Electromagnetic Calorimeter
 - Pb-scintillator sampling calorimeter
 + PbWO₄ crystals in |η|<0.33 for high precision
 - Photons and high-momentum electrons
- Muon Chambers
 - Absorber + 2 layers of muon detectors
 - Scintillator bars with SiPM readout or RPC
 - Muons down to $p_T \sim 1.5 \text{ GeV/c}$
- Forward Conversion Tracker
 - Thin tracking disks in $3 < \eta < 5$ in a dipole field
 - Very low p_T photons (<10 MeV/c)

Physics performance: Multi-charm baryon

Strangeness tracking of the Ξ_{cc}^{++} decays

- Study of hadronization mechanisms and nature of exotic hadrons
 - Tracking of non-prompt strange baryon with inner tracking layers at r<5 mm

Physics performance: heavy-flavor baryon flow

- Study of the medium response of heavy quarks
 - Constrain the Transport properties such as diffusion coefficient using $R_{\rm AA}$ and v_2 down to low $p_{\rm T}$
 - Requires high-statistics of data with a large acceptance for precision measurement of v_2

Physics performance: Thermal radiation and chiral symmetry

- Study of chiral symmetry restoration mechanisms using thermal dielectron spectrum
 - Thermal production of ρ
 - Modification of spectral function

Physics performance: Thermal radiation and chiral symmetry

- Study of QGP temperature throughout the evolution using precision measurement of dielectrons (m_{ee} >1.1 GeV/ c^2)
 - Main background:
 γ conversion (requires a small material budget)
 heavy-flavor (requires an excellent pointing resolution)
 - Differential measurements in $m_{\rm ee}$ and $p_{\rm T,ee}$ provide information on the production time

Summary

- ALICE 3 will provide access to fundamental properties of QCD matter at the phase of extreme temperature
 - Heavy quark propagation and hadronization
 - Formation and dissociation of quarkonium states and exotic hadrons
 - Temperature and expansion with electromagnetic radiation
 - Chiral symmetry restoration

Schedule

- 2023-25: selection of technologies, small-scale R&D for proof of concept
- 2026-27: large-scale engineered prototypes, Technical Design Reports
- 2028-31: construction and test
- 2031-32: contingency
- 2033-34: installation and commissioning

BACKUP

Quantity	pp	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe-Xe	Pb–Pb		
$\sqrt{s_{ m NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52		
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	3.0×10^{32}	1.5×10^{30}	3.2×10^{29}	2.8×10^{29}	8.5×10^{28}	5.0×10^{28}	3.3×10^{28}	1.2×10^{28}	Observables	Vinamatia nama
$\langle L_{\rm AA} \rangle ~({ m cm}^{-2}{ m s}^{-1})$	3.0×10^{32}	9.5×10^{29}	2.0×10^{29}	1.9×10^{29}	5.0×10^{28}	2.3×10^{28}	1.6×10^{28}	3.3×10^{27}	Observables	Kinematic range
$\mathscr{L}_{AA}^{month}\ (nb^{-1})$	5.1×10^{5}	1.6×10^3	3.4×10^2	3.1×10^2	8.4×10^{1}	3.9×10^{1}	2.6×10^{1}	5.6	Heavy-flavour hadrons	$p_{ m T} ightarrow 0,$
$\mathscr{L}_{NN}^{month}\ (pb^{-1})$	505	409	550	500	510	512	434	242		$ \eta < 4$
$R_{\rm max}({\rm kHz})$	24 000	2169	821	734	344	260	187	93	Dielectrons	$p_{\rm T} \approx 0.05$ to 3 GeV/c,
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01		$M_{\rm ee} \approx 0.05$ to $4 { m GeV}/c^2$
$dN_{ch}/d\eta$ (MB)	7	70	151	152	275	400	434	682	Photons	$p_{\mathrm{T}} pprox 0.1$ to $50\mathrm{GeV}/c$, $-2 < \eta < 4$
at $R = 0.5 \mathrm{cm}$						Quarkonia and exotica	$p_{ m T} ightarrow 0,$			
$R_{\rm hit}~({ m MHz/cm^2})$	94	85	69	62	53	58	46	35	Quantoma and should	$ \eta < 1.75$
NIEL (1 MeV n_{eq}/cm^2)	1.8×10^{14}	1.0×10^{14}	8.6×10^{13}	7.9×10^{13}	6.0×10^{13}	3.3×10^{13}	4.1×10^{13}	1.9×10^{13}	Ultrasoft photons	$p_{\rm T} \approx 1$ to 50 MeV/c,
TID (Rad)	5.8×10^6	3.2×10^6	2.8×10^6	2.5×10^6	1.9×10^6	1.1×10^6	1.3×10^6	6.1×10^5		$3 < \eta < 5$
	at R = 100 cm					Nuclei	$egin{aligned} p_{ m T} & ightarrow 0, \ oldsymbol{\eta} < 4 \end{aligned}$			
$R_{\rm hit}~({\rm kHz/cm^2})$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9		
NIEL (1 MeV n_{eq}/cm^2)	4.9×10^{9}	2.5×10^{9}	2.1×10^{9}	2.0×10^{9}	1.5×10^{9}	8.3×10^8	1.0×10^{9}	4.7×10^{8}		

 3.3×10^{1}

 1.5×10^{1}

 1.4×10^2

TID (Rad)

 8.0×10^{1}

 6.9×10^1 6.3×10^1

 4.8×10^{1}

 2.7×10^{1}