Collective Dynamics - An Experimental Overview

Chitrasen Jena

Department of Physics
Indian Institute of Science Education and Research (IISER) Tirupati

Outline

- > Introduction
- > Collectivity at top RHIC and LHC energies
- Collectivity in Small Systems
- Collectivity at Low Energies
- > Summary & Outlook

See Talks by: S. Singha (Tue, 15:10), Y. Sekiguchi (Wed, 09:20), J. Seo (Wed, 11:00) X. Liu (Mon, 14:15), G. Yan (Mon, 15:05), M. Nie (Tue, 17:00)

Introduction

✓ RHIC and LHC Top Energy

- QCD at high energy density and/or temperature
- Properties of QGP, Equation of State

✓ Beam Energy Scan (BES) Program

- QCD phase transition
- Search for QCD critical point
- Turn-off of QGP signatures

√ Fixed-Target Program

 Probe high baryon density regime (μ_B ~ 420 - 720 MeV)

STAR: arXiv: 1007.2613

Collectivity

> Azimuthal anisotropy is studied by a Fourier expansion of azimuthal distribution of final-state particles:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{T}\mathrm{d}p_{T}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T}, y)\cos(n(\phi - \Psi_{R}))\right)$$

S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996) A. Poskanzer et al., PRC 58, 1671 (1998)

$$v_n = \langle \cos(n(\phi - \Psi_R)) \rangle$$
, $\phi = \tan^{-1} \left(\frac{p_y}{p_x}\right)$ v₁: directed flow, v₂: elliptic flow,

v₃: triangular flow,

> Flow coefficients are sensitive to the initial state and properties of the medium

Flow of Charged Hadrons

- \triangleright Flow coefficients v_n provide detailed information on the initial conditions and transport properties of the created medium
- > Flow of charged hadrons well described by hydrodynamic models

Specific Shear and Bulk Viscosity

J. E. Bernhard et al, Nature Physics, 15,1113 (2019)

Precise estimation of temperature dependence of the specific shear and bulk viscosity

Flow of Identified Hadrons

- ➤ Mass ordering of v₂ at low p_T
- ➤ Baryon-meson v₂ splitting
- \triangleright Similar magnitude of v_2 between Ω and p
- > Scaling of v_2 by number of constituent quarks (baryons = 3, mesons = 2) \Rightarrow NCQ Scaling
- ✓ Partonic Collectivity at RHIC

Flow of Identified Hadrons

✓ Partonic collectivity at LHC energies

ALICE: arXiv:2206.04587

✓ Look for turn off signature of partonic collectivity

NCQ Scaling of v_2

- \triangleright NCQ scaling of v_2 holds: \sim 20% for particles, \sim 15% for anti-particles

NCQ Scaling of v_3

> NCQ scaling for v₃ holds: ~ 30% for particles, ~ 15% for anti-particles

Flow of Light Nuclei

Flow of Light Nuclei

➤ Flow of light nuclei is useful in understanding their production mechanism

Flow of Light Nuclei

➤ A model implementing light nuclei formation via coalescence of nucleons originating from a hydrodynamical evolution of the fireball coupled to an UrQMD simulation of the hadronic cascade describes the data reasonably well

Mass Number Scaling at RHIC

> v₂ of light nuclei follows the mass number scaling within 20-30%

- ➤ Significant *D*-meson v₂ in Au+Au at RHIC and Pb+Pb collisions at LHC
- > v₂ of D meson follows the NCQ scaling as light hadrons
- ✓ Evidence of charm quarks reaching local thermal equilibrium

STAR, PRL 118 (2017) 212301

X. Dong, Y-J Lee & R. Rapp, Ann. Rev. Nucl & Part. Sci. 69 (2019) 417

- ➤ Large D₀ v₂ ordinated from charm quark diffusion in QGP
- ➤ 3D viscous hydro consistent with D₀ v₂ data up to ~ 4 GeV/c
- \triangleright Model calculations with $2\pi TD_S \sim 2$ 5, can explain measured $D_0 v_2$
 - -- consistent with lattice calculations

PLB 816, 136253 (2021)

- Positive v₂ of charmed hadrons observed at LHC
- Smaller v₂ of open-beauty hadrons

Collectivity in Small Collision Systems

25/04/2023 Chitrasen Jena ATHIC 2023 19

Collectivity in Small Collision Systems

ALICE, Phys. Rev. Lett. 123, 142301 (2019)

- > Sizeable flow observed across all collision systems
- What is the origin of the observed collective effects in small systems?

Collectivity in p-Pb and pp Collisions

- \triangleright Mass ordering is observed in both p–Pb and pp collisions at low p_T
- \triangleright Baryon-meson splitting at intermediate p_T is observed in both p-Pb and pp collisions
- Models including hydrodynamics, quark coalescence and jet fragmentation describe the p-Pb data well
 - → observation of partonic collectivity in p–Pb collisions

Collectivity in Small Systems

- Clearly different initial collision geometry in p/d/3He+Au collisions
- \triangleright Smaller $<\epsilon_2>$ in p+Au collisions
- \triangleright Larger $<\epsilon_3>$ in 3 He+Au collisions

PHENIX, Nature Phys. 15, 214 (2019)

Collectivity in Small Systems

$$\varepsilon_{2}^{p+\mathrm{Au}} < \varepsilon_{2}^{d+\mathrm{Au}} \approx \varepsilon_{2}^{^{3}\mathrm{He+Au}}$$

$$v_{2}^{p+\mathrm{Au}} < v_{2}^{d+\mathrm{Au}} \approx v_{2}^{^{3}\mathrm{He+Au}}$$

$$\varepsilon_3^{p+\mathrm{Au}} \approx \varepsilon_3^{d+\mathrm{Au}} < \varepsilon_3^{3\mathrm{He+Au}}$$
 $v_3^{p+\mathrm{Au}} \approx v_3^{d+\mathrm{Au}} < v_3^{3\mathrm{He+Au}}$

PHENIX, Nature Phys. 15, 214 (2019)

✓ Suggests flow is geometric in origin

Collectivity in Small Systems

- ➤ STAR measurement of v₂ is compatible with PHENIX measurement within uncertainties
- ➤ STAR v₃ measurements for p+Au and d+Au collisions are about a factor of 3 larger than those reported by PHENIX
- ➤ Model study shows that upto 50% of this v3 discrepancy could result from the larger longitudinal decorrelation possible in the PHENIX measurements.

arXiv:2211.16376 [nucl-th]

Further developments in the model calculations to include nonflow and prehydrodynamic flow effects could shed light on the remaining 50% differences.

STAR: arXiv:2210.11352

Collectivity in γ -Pb and γ p collisions

ATLAS, Phys. Rev. C. 104 (2021) 014903

- The p_T -differential v_2 for photonuclear and pp collisions is comparable within uncertainties in p_T < 2 GeV/c
- > CGC calculations (initial-state effects only) is in reasonable agreement with the data

Collectivity at Low Energies

25/04/2023 Chitrasen Jena ATHIC 2023 26

Energy Dependence of v₂

ALICE, arXiv:2211.04384

- > v_2 measurements at the LHC reported by ALICE in midcentral collisions show an increase of about 30% compared to the top energy at RHIC
- Elliptic flow did not saturate at higher energies
 - -- consistent with most of the hydrodynamic model predictions
- Elliptic flow becomes negative at lower energies

Collectivity at Low Energies

- Elliptic flow is negative in Au+Au collisions $\sqrt{s_{NN}} = 3 \text{ GeV}$
- ➤ The NCQ scaling breaks, especially for positively charged particles
 - ✓ Hadronic interaction dominated matter

Collectivity at Low Energies

STAR, Phys. Lett. B 827 (2022) 136941

 \triangleright No mass number scaling is observed for light nuclei at $\sqrt{s_{NN}} = 3$ GeV

Summary

- > Evidence of partonic collectivity at top RHIC and LHC energies
- > Precision measurement of transport properties of the medium
- > Observation of collectivity in small collision systems
- > Signature of partonic collectivity seems to disappear at lower energies

✓ Stay tuned for more exciting results from high statistics BES-II dataset and LHC Run3 with upgraded detectors

Thank You!

25/04/2023 Chitrasen Jena ATHIC 2023 31

BES Program at RHIC

- RHIC provides a unique opportunity to explore the QCD phase diagram with different collision energies
 - ✓ Search for QCD critical point, 1st order phase transition, turn-off of QGP, etc.
- **BES-I** (2010 2011, 2014, 2017): $\sqrt{s_{NN}} = 7.7$, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 GeV
- **▶ BES-II** (2018, 2019 2021):
- Collider mode: $\sqrt{s_{NN}} = 7.7, 9.2, 11.5, 14.6, 17.3, 19.6, 27 \text{ GeV}$
- Fixed-Target mode:

 $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2 7.7 GeV

STAR: arXiv: 1007.2613 BES-II white paper:

https://drupal.star.bnl.gov/STAR/starnotes/public/sn

0598