

Electromagnetic probe Experiment

The 9th Asia Triangle Heavy Ion Conference (ATHIC2023) Hiroshima, Japan 25/04/2023

Satoshi YANO

Hiroshima University

lacksquare

Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton)

- \bullet
- \bullet

Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton) Photons do not interact with hot and dense medium induced by HIC via the strong interaction

- lacksquare
- Photons are emitted at all stages of the collisions lacksquare

Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton) Photons do not interact with hot and dense medium induced by HIC via the strong interaction

- lacksquare
- Photons are emitted at all stages of the collisions lacksquare

Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton) Photons do not interact with hot and dense medium induced by HIC via the strong interaction

It is a very clean probe to investigate the space-time evolution of the collision

Photon sources in HIC

Photon sources in HIC (a few years ago)

Direct photon puzzle (1)

Direct photon

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
 - Hybrid model describing all stages

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
 - Hybrid model describing all stages
- There is a discrepancy between PHENIX and lacksquareSTAR result

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
 - Hybrid model describing all stages
- There is a discrepancy between PHENIX and lacksquareSTAR result
- ALICE result is a similar trend as PHENIX within lacksquarelarge experimental uncertainties (not shown here)

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
 - Hybrid model describing all stages
- There is a discrepancy between PHENIX and lacksquareSTAR result
- ALICE result is a similar trend as PHENIX within lacksquarelarge experimental uncertainties (not shown here)

Missing something in the model? Experimental uncertainties?

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC

Direct photon

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $v_{2,dir} \sim v_{2,\pi}$ has been observed, but large experimental uncertainties at LHC

Direct photon

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $v_{2,dir} \sim v_{2,\pi}$ has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time

Direct photon

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $v_{2,dir} \sim v_{2,\pi}$ has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time
- What is needed to solve the puzzle on the experimental side: •

Direct photon

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $V_{2,dir} \sim V_{2,\pi}$ has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time
- What is needed to solve the puzzle on the experimental side: •
 - Enhancing the robustness of experimental data

Direct photon

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $V_{2,dir} \sim V_{2,\pi}$ has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time
- What is needed to solve the puzzle on the experimental side: •
 - Enhancing the robustness of experimental data
 - Separate the direct photon source into individual components

Direct photon

- C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $V_{2,dir} \sim V_{2,\pi}$ has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time
- What is needed to solve the puzzle on the experimental side: •
 - Enhancing the robustness of experimental data
 - Separate the direct photon source into individual components
 - Systematic comparison across different collision systems and energies

Direct photon

•

Increasing of Non-prompt T_{eff} with p_T

Excellent statistics and high-quality data have been released by PHENIX at RHIC •

Increasing of Non-prompt T_{eff} with p_T

- Excellent statistics and high-quality data have been released by PHENIX at RHIC lacksquarelacksquare
- Non-prompt component has been extracted
 - Non-prompt = Direct photon Prompt photon (scaled pp data)

Non-prompt photon

Increasing of Non-prompt T_{eff} with p_T

- Excellent statistics and high-quality data have been released by PHENIX at RHIC lacksquareNon-prompt component has been extracted lacksquare
- - Non-prompt = Direct photon Prompt photon (scaled pp data)
- x2~3 discrepancy at lower p_T (late stage) is still remaining but not higher p_T (early stage) •

ot T_{eff} with p_T

d by PHENIX at RHIC

r p_T (late stage) is still remaining but not higher p_T (early stage)

•Higher temperature is suggested at the early stage

ot T_{eff} with p_T

d by PHENIX at RHIC

r p_T (late stage) is still remaining but not higher p_T (early stage)

- •Higher temperature is suggested at the early stage
- •No centrality dependence has been observed

ot T_{eff} with p_T

d by PHENIX at RHIC

r p_T (late stage) is still remaining but not higher p_T (early stage)

- •Higher temperature is suggested at the early stage
- •No centrality dependence has been observed
- Caveat: $T_{eff} > T$ is affected by the blue-shift effect

PHENIX has measured direct photon at $\sqrt{s_{NN}} = 39$ and 62.4 GeV •

- PHENIX has measured direct photon at $\sqrt{s_{NN}} = 39$ and 62.4 GeV lacksquare
- Excess (~ 20%) above decay photon has been observed lacksquare

Phys. Rev. C **107**, 024914

- $T_{\rm eff}$ achieves ~170 MeV at both energies lacksquare

Direct photon

- ullet
- $T_{\rm eff}$ achieves ~170 MeV at both energies
- been observed

Direct photon

 ALICE has released the new result by photo material budget

ALICE has released the new result by photon conversion method with the data-driven detector

- material budget
 - The systematic uncertainty related to material budget has been reduced from 4.5% to 2.5%

Direct photon

ALICE has released the new result by photon conversion method with the data-driven detector

- material budget
 - The systematic uncertainty related to material budget has been reduced from 4.5% to 2.5%

ALICE has released the new result by photon conversion method with the data-driven detector

- material budget
 - The systematic uncertainty related to material budget has been reduced from 4.5% to 2.5%

ALICE has released the new result by photon conversion method with the data-driven detector

Low p_T (1-2 GeV/c) $T_{\rm eff} = 343 \pm 32 \pm 68 \,\,{\rm MeV} \,(\log p_T)$ $T_{\rm eff} = 339 \pm 38 \pm 64 \, {\rm MeV} \, ({\rm low} \, p_{\rm T})$

High p_T (2-4 GeV/c) $T_{\rm eff} = 406 \pm 19 \pm 36 \,\,{\rm MeV}$ (high $p_{\rm T}$) $T_{\rm eff} = 458 \pm 25 \pm 40 \, {\rm MeV} \, ({\rm high} \, p_{\rm T})$

Re: Direct photon puzzle Underestimate state-of-art model at low-p_T?

but systematically larger than the model

Non-prompt photon

New ALICE results are in agreement with the state-of-art model within experimental uncertainties,

Re: Direct photon puzzle Underestimate state-of-art model at low-p_T?

but systematically larger than the model

Non-prompt photon

New ALICE results are in agreement with the state-of-art model within experimental uncertainties,

Re: Direct photon puzzle Underestimate state-of-art model at low-p_T?

but systematically larger than the model

Non-prompt photon

New ALICE results are in agreement with the state-of-art model within experimental uncertainties,

No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed lacksquare

- No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed \bullet
 - Late stage emission is dominated by near phase transition (0.4 1.3 GeV/c)

- No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed lacksquare
 - Late stage emission is dominated by near phase transition (0.4 1.3 GeV/c)
 - QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/c)

- No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed lacksquare
 - Late stage emission is dominated by near phase transition (0.4 1.3 GeV/c)
 - QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/c)
 - AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/c)

- No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed lacksquare
 - Late stage emission is dominated by near phase transition (0.4 1.3 GeV/c)
 - QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/c)
 - AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/c)
- Direct photon yield is proportional to $(dN/d\eta)^{\alpha}$ $- \alpha = 1.11 \pm 0.02 (\text{stat.})^{+0.09}_{-0.08} (\text{syst.})$

- No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed lacksquare
 - Late stage emission is dominated by near phase transition (0.4 1.3 GeV/c)
 - QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/c)
 - AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/c)
- Direct photon yield is proportional to $(dN/d\eta)^{\alpha}$ $- \alpha = 1.11 \pm 0.02 (\text{stat.})^{+0.09}_{-0.08} (\text{syst.})$
- The theoretical prediction is a ~ 1.6 lacksquare
 - HG (p_T<1 GeV) ~ 1.23
 - QGP (1<*p*_T<4 GeV) ~ 1.83

- No $\sqrt{s_{NN}}$ dependence of T_{eff} has been observed lacksquare
 - Late stage emission is dominated by near phase transition (0.4 1.3 GeV/c)
 - QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/c)
 - AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/c)
- Direct photon yield is proportional to $(dN/d\eta)^{\alpha}$ $- \alpha = 1.11 \pm 0.02 (\text{stat.})^{+0.09}_{-0.08} (\text{syst.})$
- The theoretical prediction is a ~ 1.6 lacksquare
 - HG (p_T<1 GeV) ~ 1.23
 - QGP (1<*p*_T<4 GeV) ~ 1.83

More insight into the origin of photons is needed

Low mass region (IMR), $M_{\parallel} < 1.5 \text{ GeV}/c^2$, is sensitive to the lacksquarelate-stage temperature

- Low mass region (IMR), $M_{\parallel} < 1.5 \text{ GeV}/c^2$, is sensitive to the lacksquarelate-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\parallel} < 2.5 \text{ GeV}/c^2$, is ulletsensitive to the early-stage temperature

- Low mass region (IMR), $M_{\parallel} < 1.5 \text{ GeV}/c^2$, is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\parallel} < 2.5 \text{ GeV}/c^2$, is ulletsensitive to the early-stage temperature
- p-meson mass spectrum is affected by the surrounding medium ($\tau_{\rm p} = 1.3 \text{ fm/}c < \tau_{\rm fb}$)

- Low mass region (IMR), $M_{\parallel} < 1.5 \text{ GeV}/c^2$, is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\parallel} < 2.5 \text{ GeV}/c^2$, is lacksquaresensitive to the early-stage temperature
- p-meson mass spectrum is affected by the surrounding medium ($\tau_{\rho} = 1.3 \text{ fm/}c < \tau_{fb}$)
- Mass spectrum for $1.0 < M_{\parallel} < 1.5 \text{ GeV}/c^2$, is affected by V-A ulletchiral mixing of ρ and a_1 is expected
 - Mass modification is sensitive to chiral symmetry restoration (CSR)

- Low mass region (IMR), $M_{\parallel} < 1.5 \text{ GeV}/c^2$, is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\parallel} < 2.5 \text{ GeV}/c^2$, is lacksquaresensitive to the early-stage temperature
- p-meson mass spectrum is affected by the surrounding medium ($\tau_{\rho} = 1.3 \text{ fm/}c < \tau_{fb}$)
- Mass spectrum for $1.0 < M_{\parallel} < 1.5 \text{ GeV}/c^2$, is affected by V-A ulletchiral mixing of ρ and a_1 is expected
 - Mass modification is sensitive to chiral symmetry restoration (CSR)

Inverse slope $T_{\rm eff}$ in the mass spectrum is **NOT** affected by the blue-shift

Dielectrons from BESI

Clear enhancement compared to cocktail contribution in both low mass region and ulletintermediate mass region at 27 and 54.4 GeV have been observed

Talk at QM2022

Temperature from excess dilepton from BESII Low mass region (LMR) = late stage

Talk at QM2022

Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)

Temperature from excess dilepton from BESI Low mass region (LMR) = late stage

Talk at QM2022

- Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- $T_{\rm LMR}$ is similar despite significant differences in collision energy and system size
 - $T_{LMR}^{54.4GeV} = 174 \pm 15 MeV$
 - $T_{\rm LMR}^{27\rm GeV} = 167 \pm 20 \,\rm MeV$
 - $T_{\rm LMR}^{17.3 \rm GeV} = 165 \pm 4 \rm MeV$

Temperature from excess dilepton from BESI Low mass region (LMR) = late stage

Talk at QM2022

- Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- $T_{\rm LMR}$ is similar despite significant differences in lacksquarecollision energy and system size
 - $T_{LMR}^{54.4GeV} = 174 \pm 15 MeV$
 - $T_{LMR}^{27GeV} = 167 \pm 20 MeV$
 - $T_{\rm LMR}^{17.3 \rm GeV} = 165 \pm 4 \rm MeV$

close to T_{pc}

Temperature from excess dilepton from BESI Low mass region (LMR) = late stage

Talk at QM2022

Same temperature at the late stage, but a longer lifetime medium than SPS

- Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- $T_{\rm LMR}$ is similar despite significant differences in lacksquarecollision energy and system size
 - $T_{LMR}^{54.4GeV} = 174 \pm 15 MeV$
 - $T_{LMR}^{27GeV} = 167 \pm 20 MeV$
 - $T_{\rm LMR}^{17.3 \rm GeV} = 165 \pm 4 \rm MeV$

close to T_{pc}

Temperature from excess dilepton from BESI Intermediate mass region (IMR) = early stage New since **HP 2020**

Talk at QM2022

Charge density normalized mass spectrum in • AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)

Temperature from excess dilepton from BESI Intermediate mass region (IMR) = early stage New since **HP 2020**

Talk at QM2022

- Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- T_{IMR} at 27 and 54.4 GeV is larger than 17.3 GeV
 - $T_{LMR}^{54.4GeV} = 338 \pm 59 \text{ MeV}$
 - $T_{\rm LMR}^{27\rm GeV} = 301 \pm 60 \,\rm MeV$
 - $T_{LMR}^{17.3GeV} = 205 \pm 12 \text{ MeV}$

Temperature from excess dilepton from BESI Intermediate mass region (IMR) = early stage New since **HP 2020**

Talk at QM2022

- Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- T_{IMR} at 27 and 54.4 GeV is larger than 17.3 GeV
 - $T_{LMR}^{54.4GeV} = 338 \pm 59 \text{ MeV}$
 - $T_{\rm LMR}^{27\rm GeV} = 301 \pm 60 \,\rm MeV$
 - $T_{LMR}^{17.3GeV} = 205 \pm 12 \text{ MeV}$

Higher than LMR

Temperature from excess dilepton from BESI Intermediate mass region (IMR) = early stage New since **HP 2020**

Talk at QM2022

- Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- T_{IMR} at 27 and 54.4 GeV is larger than 17.3 GeV
 - $T_{LMR}^{54.4GeV} = 338 \pm 59 \text{ MeV}$
 - $T_{\rm LMR}^{27\rm GeV} = 301 \pm 60 \,\rm MeV$
 - $T_{LMR}^{17.3GeV} = 205 \pm 12 \text{ MeV}$

Higher than LMR

Initial temperature depends on collision energy

13

- lacksquare

System size and µ_B dependence

The models describe LMR (late-stage) thermal dilepton, but IMR (early-stage) is underestimated

This is the opposite result of non-prompt direct photon measured by the PHENIX experiment at 200 GeV

System size and µ_B dependence

- The models describe LMR (late-stage) thermal dilepton, but IMR (early-stage) is underestimated This is the opposite result of non-prompt direct photon measured by the PHENIX experiment at 200 GeV
- Temperature from dilepton doesn't depend on the system size
 - Temperature of the early stage is expected to depend on
 - Late-stage LMR temperature is nearly at the phase transition temperature

System size and µ_B dependence

- The models describe LMR (late-stage) thermal dilepton, but IMR (early-stage) is underestimated This is the opposite result of non-prompt direct photon measured by the PHENIX experiment at 200 GeV
- Temperature from dilepton doesn't depend on the system size
 - Temperature of the early stage is expected to depend on
 - Late-stage LMR temperature is nearly at the phase transition temperature

The information to reveal the QCD phase diagram is gradually being gathered

- It is challenging to extract the dielectron excess at LHC energy due to ulletthe huge background
 - Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively

- It is challenging to extract the dielectron excess at LHC energy due to ulletthe huge background
 - Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively
- Direct y has been measured in PbPb collisions at 5.02 TeV ullet
 - γ^{incl} measured with photon conversion method is used

 p_{T}

- It is challenging to extract the dielectron excess at LHC energy due to ulletthe huge background
 - Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively
- Direct y has been measured in PbPb collisions at 5.02 TeV • γ^{incl} measured with photon conversion method is used
- Data is larger than prompt photon predicted $b y^{\mu\nu} Q G^{\mu\nu}$ systematically
 - Data is described by several models within uncertainties

 p_{T}

- It is challenging to extract the dielectron excess at LHC energy due to lacksquarethe huge background
 - Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively
- Direct y has been measured in PbPb collisions at 5.02 TeV • γ^{incl} measured with photon conversion method is used
- Data is larger than prompt photon predicted $b y^{\mu\nu} Q G^{\mu\nu}$ systematically
 - Data is described by several models within uncertainties

It is very difficult and challenging measurement at LHC PT due to huge huge background

 \rightarrow

- Dielectron excess has been extracted
 - LFs are measured results, but N_{coll} scaled HF contribution w/ and ____ w/o R_{AA} effect is used N_{coll}

Dilepton excess at LHC energies

- Dielectron excess has been extracted
 - LFs are measured results, but N_{coll} scaled HF contribution w/ and _____ w/o R_{AA} effect is used N_{coll}
- Due to large statistical and systematic uncertainties, it is lacksquaredifficult to resolve the QGP contribution
 - LMR: Combinatorial electrons
 - IMR: Contribution from HF ($\sigma_{cc}^{LHC} \sim 10 \times \sigma_{cc}^{RHIC}$)

- Dielectron excess has been extracted
 - LFs are measured results, but N_{coll} scaled HF contribution w/ and _____ w/o R_{AA} effect is used N_{coll}
- Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution
 - LMR: Combinatorial electrons
 - IMR: Contribution from HF ($\sigma_{cc}^{LHC} \sim 10 \times \sigma_{cc}^{RHIC}$)
- The following improvement is necessary (besides statistics)

- Dielectron excess has been extracted
 - LFs are measured results, but N_{coll} scaled HF contribution w/ and w/o R_{AA} effect is used N_{coll}
- Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution
 - LMR: Combinatorial electrons
 - IMR: Contribution from HF ($\sigma_{cc}^{LHC} \sim 10 \times \sigma_{cc}^{RHIC}$)
- The following improvement is necessary (besides statistics) – LMR: Reducing background electrons by improving detector material, or altering target lepton
- (GeV/c^2) **ALICE Preliminary** 0–10% Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV $0.2 < p_{_{T_e}} < 10 \text{ GeV/}c, |\eta_e| < 0.8$ $\frac{dN_{\text{excess}}}{dm_{\text{ee}}}$ $0.0 < p_{T_{ac}} < 8.0 \text{ GeV}/c$ Excess = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG × <N ...>) ∠ Sev • Excess = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG × < N_{adl} > × $R_{AA}^{c/b}$ QGP + in-medium p (R.Rapp, Adv. HEP. 2013 (2013) 148253) QGP + in-medium o (PHSD, PRC 97 (2018) 064907) 10 Arrows show upper limits at 95% C.L 10 10^{-1} 10-OGP ladronic matter ALI-PREL-507342

- Dielectron excess has been extracted
 - LFs are measured results, but N_{coll} scaled HF contribution w/ and w/o R_{AA} effect is used N_{coll}
- Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution
 - LMR: Combinatorial electrons
 - IMR: Contribution from HF ($\sigma_{cc}^{LHC} \sim 10 \times \sigma_{cc}^{RHIC}$)
- The following improvement is necessary (besides statistics)

 (GeV/c^2) $0.2 < p_{_{T_e}} < 10 \text{ GeV/}c, |\eta_e| < 0.8$ $\frac{dN_{\text{excess}}}{dm_{\text{ee}}}$ $0.0 < p_{T_{ac}} < 8.0 \text{ GeV}/c$ Excess = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG × <N ...>) ∠ Sev • Excess = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG × < N_{adl} > × $R_{AA}^{c/b}$ QGP + in-medium p (R.Rapp, Adv. HEP. 2013 (2013) 148253) QGP + in-medium o (PHSD, PRC 97 (2018) 064907) 10 Arrows show upper limits at 95% C.L 10 10^{-1} 10-OGP ladronic matter ALI-PREL-507342

0–10% Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

ALICE Preliminary

- LMR: Reducing background electrons by improving detector material, or altering target lepton – IMR: Improving HF determination by excellent detectors, or altering measuring rapidity

Direct photon production in high-multiplicity pp

Significant reduction of uncertainties compared to the previous ALICE paper

17

Direct photon production in high-multiplicity pp

- Significant reduction of uncertainties compared to the previous ALICE paper
- Similar direct photon fraction in MB and HM pp collisions has been observed

ared to the previous ALICE paper /I pp collisions has been observed

HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T •

18

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T lacksquare
- lacksquare

ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T •
- lacksquare

ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T •
- ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV
 - This effect appears to be the disappearance of the peak in the invariant mass spectrum

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T •
- ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV
 - This effect appears to be the disappearance of the peak in the invariant mass spectrum

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T •
- ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV
 - This effect appears to be the disappearance of the peak in the invariant mass spectrum

Look forwarding to updates from HADES

- EM probe is the most important probes in HIC •
 - Temperature measurement, space-time evolution, and chiral symmetry restoration ____

- EM probe is the most important probes in HIC ullet
- lacksquaredilepton channels
 - Improve experimental data robustness
 - New collision energies with high statistics

Temperature measurement, space-time evolution, and chiral symmetry restoration

Very high-quality data enable us to separate the photon emission stage with both real photon and

- EM probe is the most important probes in HIC lacksquareTemperature measurement, space-time evolution, and chiral symmetry restoration
- dilepton channels
 - Improve experimental data robustness
 - New collision energies with high statistics
- Direct photon puzzle in yield is still remaining, but the discrepancy has been reduced
 - New photon puzzle at early stage photon yield in real photon and virtual photon (dilepton)?

Very high-quality data enable us to separate the photon emission stage with both real photon and

- EM probe is the most important probes in HIC lacksquareTemperature measurement, space-time evolution, and chiral symmetry restoration
- lacksquaredilepton channels
 - Improve experimental data robustness
 - New collision energies with high statistics
- Direct photon puzzle in yield is still remaining, but the discrepancy has been reduced
 - New photon puzzle at early stage photon yield in real photon and virtual photon (dilepton)?
- lacksquare

Very high-quality data enable us to separate the photon emission stage with both real photon and

There could be interesting relationships between low energy HIC and high multiplicity small system

Event classification by prompt photon

- PHENIX has reported the existence of event selection bias with high ullet p_T particles in d+Au collisions
- PHENIX has proposed a method to evaluate N_{coll} with direct γ data lacksquarein each centrality

$$R_{pA}^{\gamma} = \frac{Y_{pA}^{\gamma}(p_{\mathrm{T}})}{\langle N_{\mathrm{coll}} \rangle_{\mathrm{Exp.}} Y_{pp}^{\gamma}(p_{\mathrm{T}})} = 1 \quad \rightarrow \quad \langle N_{\mathrm{coll}} \rangle_{\mathrm{EXP}} (p_{\mathrm{T}}) = \frac{Y_{pA}^{\gamma}(p_{\mathrm{T}})}{Y_{pp}^{\gamma}(p_{\mathrm{T}})}$$

- •20% high $p_T \pi^0$ suppression has been observed with 4.5 σ significance in d+Au collisions at 200 GeV
- •Study of system size dependence, p+Au, ³He+Au, is mandatory

Hydrodynamics + chiral mixing model

- lacksquare
- 3 scenarios have been demonstrated, \bullet

The new model has been created with chiral mixing phenomena in the viscous hydrodynamics

