Electromagnetic probe Experiment

Satoshi YANO

Hiroshima University

The 9th Asia Triangle Heavy Ion Conference (ATHIC2023) Hiroshima, Japan 25/04/2023 1

• Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton)

-
-

• Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton) • Photons do not interact with hot and dense medium induced by HIC via the strong interaction

• Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton) • Photons do not interact with hot and dense medium induced by HIC via the strong interaction

-
-
- Photons are emitted at all stages of the collisions

It is a very clean probe to investigate the space-time evolution of the collision

• Electromagnetic probes (EM) : Real and virtual photon (virtual photon decays into dilepton) • Photons do not interact with hot and dense medium induced by HIC via the strong interaction

-
-
- Photons are emitted at all stages of the collisions

Photon sources in HIC

Photon sources in HIC (a few years ago)

Direct photon puzzle (1)

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
	- Hybrid model describing all stages

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
	- Hybrid model describing all stages
- There is a discrepancy between PHENIX and STAR result

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
	- Hybrid model describing all stages
- There is a discrepancy between PHENIX and STAR result
- ALICE result is a similar trend as PHENIX within large experimental uncertainties (not shown here)

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- State-of-art models (all in model) underestimate the low- p_T region (late stage)
	- Hybrid model describing all stages
- There is a discrepancy between PHENIX and STAR result
- ALICE result is a similar trend as PHENIX within large experimental uncertainties (not shown here)
- Missing something in the model? Experimental uncertainties?

Direct photon

C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC

> Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $v_{2,dir} \sim v_{2,\pi}$ has been observed, but large experimental uncertainties at LHC

Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- $v_{2,dir} \sim v_{2,\pi}$ has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time

Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- v_{2,dir} \sim v_{2, π} has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and $v_{2,dir}$ at the same time
- What is needed to solve the puzzle on the experimental side:

Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- v_{2,dir} \sim v_{2, π} has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and v_{2,dir} at the same time
- What is needed to solve the puzzle on the experimental side:
	- Enhancing the robustness of experimental data

Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- v_{2,dir} \sim v_{2, π} has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and v_{2,dir} at the same time
- What is needed to solve the puzzle on the experimental side:
	- Enhancing the robustness of experimental data
	- Separate the direct photon source into individual components
-
- Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909

- Large $v_{2,dir}$ (~ $v_{2,\pi}$) is not reproduced by the state-ofart model at RHIC
- v_{2,dir} \sim v_{2, π} has been observed, but large experimental uncertainties at LHC
- It is difficult to reproduce yield and v_{2,dir} at the same time
- Phys Rev (2020) 1014909 EMMI Rapid Reaction Task Force (RRTF) • What is needed to solve the puzzle on the experimental side: C. Gale, J-F. Paquet, B. Schenke, C. Shen Phys.Rev.C 105 (2022) 1, 014909
	- Enhancing the robustness of experimental data
	- Separate the direct photon source into individual components
	- Systematic comparison across different collision systems and energies

 $\frac{A}{A}$

Increasing of Non-prompt Teff with pT

• Excellent statistics and high-quality data have been released by PHENIX at RHIC

Increasing of Non-prompt T_{eff} with pT

- Excellent statistics and high-quality data have been released by PHENIX at RHIC
- Non-prompt component has been extracted
	- Non-prompt = Direct photon Prompt photon (scaled pp data)

Increasing of Non-prompt T_{eff} with pT

- Excellent statistics and high-quality data have been released by PHENIX at RHIC • Non-prompt component has been extracted
- - Non-prompt = Direct photon Prompt photon (scaled pp data)
- x2~3 discrepancy at lower p_T (late stage) is still remaining but not higher p_T (early stage)

Non-prompt photon

Increasing of Non-prompt Teff with pT

•Higher temperature is suggested at the early stage

Increasing of Non-prompt Teff with pT

- •Higher temperature is suggested at the early stage
- •No centrality dependence has been observed

Increasing of Non-prompt Teff with pT

- •Higher temperature is suggested at the early stage
- •No centrality dependence has been observed
- Caveat: T_{eff} > T is affected by the blue-shift effect

• PHENIX has measured direct photon at $\sqrt{s_{NN}}$ = 39 and 62.4 GeV

- PHENIX has measured direct photon at $\sqrt{s_{NN}}$ = 39 and 62.4 GeV
- Excess (~ 20%) above decay photon has been observed

 $\overline{\Omega}$ y s
C $\frac{1}{2}$ \overline{a} Phys. Rev. C **107**, 024914

PHENIX

- t (γ n at l
- Excess (~ 20%) above decay photon has been observed \sim t \sim
- T_{eff} achieves ~170 MeV at both energies \supseteq

LOW-*pT* DIRECT-PHOTON PRODUCTION IN Au + Au … PHYSICAL REVIEW C **107**, 024914 (2023) **Direct photon**

- t (ntr γ n at l
- Excess (~ 20%) above decay photon has been observed $\overline{}$ γ
- T_{eff} achieves ~170 MeV at both energies \supseteq
- been observed 1.6 <u>ir</u> ገ
 $\frac{1}{2}$ Tes and 0-20%

LOW-*pT* DIRECT-PHOTON PRODUCTION IN Au + Au … PHYSICAL REVIEW C **107**, 024914 (2023) **Direct photon**

PHENIX

0-86%

PHENIX

T p

20-40%

• ALICE has released the new result by photon conversion method with the data-driven detector

material budget

• ALICE has released the new result by photon conversion method with the data-driven detector

- material budget
	- The systematic uncertainty related to material budget has been reduced from 4.5% to 2.5%

• ALICE has released the new result by photon conversion method with the data-driven detector

- material budget
	- The systematic uncertainty related to material budget has been reduced from 4.5% to 2.5%

• ALICE has released the new result by photon conversion method with the data-driven detector

Low p_T (1-2 GeV/c) $T_{\text{eff}} = 343 \pm 32 \pm 68 \text{ MeV (low } p_{\text{T}})$ $T_{\text{eff}} = 339 \pm 38 \pm 64 \text{ MeV (low } p_T)$

 $High p_T (2-4 GeV/c)$ $T_{\text{eff}} = 406 \pm 19 \pm 36 \text{ MeV (high } p_{\text{T}})$ $T_{\text{eff}} = 458 \pm 25 \pm 40$ MeV (high p_T)

- material budget
	- The systematic uncertainty related to material budget has been reduced from 4.5% to 2.5%

• New ALICE results are in agreement with the state-of-art model within experimental uncertainties,

Re: Direct photon puzzle Underestimate state-of-art model at low-p_T?

but systematically larger than the model

ALICE Preliminary model model: C.Gale et al. PRC 105 (2022) 014909 **Fig. 2018** PHENIX 0-20% Au-Au $\sqrt{s_{NN}}$ = 200 GeV arXiv:2203.17187 data ALICE 0-20% Pb-Pb $\sqrt{s_{\scriptscriptstyle NN}}$ = 5.02 TeV Preliminary **+** ALICE 0-10% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV (2011) Preliminary $10[°]$

ALI-PREL-540679

Re: Direct photon puzzle Underestimate state-of-art model at low-p_T?

but systematically larger than the model

ALICE Preliminary

Update from the STAR experiment is easy of the STAR experiment is easy of the STAR experiment is easy of the S
In the STAR experiment is easy of the STAR experiment is easy of the STAR experiment is easy of the STAR experi

• New ALICE results are in agreement with the state-of-art model within experimental uncertainties,

Re: Direct photon puzzle Underestimate state-of-art model at low-p_T?

but systematically larger than the model

ALICE Preliminary model model: C.Gale et al. PRC 105 (2022) 014909 **Fig. 2013** PHENIX 0-20% Au-Au $\sqrt{s_{NN}}$ = 200 GeV arXiv:2203.17187 data ALICE 0-20% Pb-Pb $\sqrt{s_{\scriptscriptstyle NN}}$ = 5.02 TeV Preliminary **+** ALICE 0-10% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV (2011) Preliminary $p_{\rm T}$ (GeV/c)

• New ALICE results are in agreement with the state-of-art model within experimental uncertainties,

Energy and system size dependence of direct photon N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023)

bsen • No√_{*s*NN} dependence of T_{eff} has been observed

p

 $\overline{}$

Non-prompt photon

Energy and system size dependence of direct photon

- −
Dhase
Dhase • No√_{*s*NN} dependence of T_{eff} has been observed
	- $\mathbf{1}$ – Late stage emission is dominated by near phase transition (0.4 - 1.3 GeV/*c*)

PHENIX Au+Au 200 GeV

 $\overline{}$

p

N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023) **Non-prompt photon**

Energy and system size dependence of direct photon

 PHENIX Au+Au 200 GeV Exp. fit UIT CUITSIUIT

 $\overline{}$

p

N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023) **Non-prompt photon**

- −
Dhase
Dhase • No√_{*s*NN} dependence of T_{eff} has been observed
	- $\mathbf{1}$ – Late stage emission is dominated by near phase transition (0.4 - 1.3 GeV/*c*)
	- also N $\overline{}$ – QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/*c*)

Energy and system size dependence of direct photon

 PHENIX Au+Au 200 GeV Exp. fit UIT CUITSIUIT

 $\overline{}$

p

N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023) **Non-prompt photon**

- −
Dhase
Dhase • No√_{*s*NN} dependence of T_{eff} has been observed
	- $\mathbf{1}$ – Late stage emission is dominated by near phase transition (0.4 - 1.3 GeV/*c*)
	- also N $\overline{}$ – QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/*c*)
	- dy)/(dN AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/*c*)

Energy and system size dependence of direct photon N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023)

p

- −
Dhase
Dhase • No√_{*s*NN} dependence of T_{eff} has been observed
	- Late stage emission is dominated by near phase transition (0.4 1.3 GeV/*c*)
	- −
C י
al $\overline{}$ – QGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/*c*)
	- dy)/(dN AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/*c*)
- \overline{h} $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ • Direct photon yield is proportional to (dN/d*η*)^α $\alpha = 1.11 \pm 0.02$ (stat.)^{+0.02} (syst.) +0.09 -0.08

 $\frac{1}{2}$ $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ Exp. fit UIT CUITSIUIT

 $\overline{}$

- No√_{*s*NN} dependence of T_{eff} has been observed −
Dhase
Dhase
	- Late stage emission is dominated by near phase transition (0.4 1.3 GeV/*c*)
	- − CGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/*c*) י
al $\overline{}$
	- energies (0.7 2.1 Gev/c)
- AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/c)
- Direct photon yield is proportional to (dN/dη)^α $\alpha = 1.11 \pm 0.02$ (stat.)^{+0.02} (syst.) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ +0.09 -0.08
- The theoretical prediction is $a \sim 1.6$
	- $HG (p_T < 1 GeV) \sim 1.23$
	- QGP (1<*p*T<4 GeV) ~ 1.83

 $\frac{1}{2}$ $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$).4 - 1.3 GeV/c) Exp. fit UIT CUITSIUIT

 $\overline{}$

Energy and system size dependence of direct photon N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023)

p

- No√_{*s*NN} dependence of T_{eff} has been observed −
Dhase
Dhase
	- Late stage emission is dominated by near phase transition (0.4 1.3 GeV/*c*)
	- − CGP stage and thermalized emissions are also NOT dependent on collision energies (0.9 - 2.1 GeV/*c*) י
al $\overline{}$
	- energies (0.7 2.1 Gev/c)
- AuAu @ 200 GeV: 514±61 MeV, PbPb @ 2760 GeV: 406±41 MeV (2 4 GeV/c)
- Direct photon yield is proportional to (dN/dη)^α $\alpha = 1.11 \pm 0.02$ (stat.)^{+0.02} (syst.) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ +0.09 -0.08
- The theoretical prediction is $a \sim 1.6$
	- $HG (p_T < 1 GeV) \sim 1.23$
	- QGP (1<*p*T<4 GeV) ~ 1.83

Energy and system size dependence of direct photon N. J. ABDULAMEER *et al.* PHYSICAL REVIEW C **107**, 024914 (2023)

0.5 1.5 1.5 1.5 0.5 3.5 $\overline{}$ p (b)

0 More insight into the origin of photons is needed

 $\frac{1}{2}$ $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$).4 - 1.3 GeV/c) Exp. fit UIT CUITSIUIT

• Low mass region (IMR), M_{\parallel} < 1.5 GeV/ c^2 , is sensitive to the late-stage temperature

- Low mass region (IMR), M_{\parallel} < 1.5 GeV/ c^2 , is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\text{II}} < 2.5$ GeV/ c^2 , is sensitive to the early-stage temperature

- Low mass region (IMR), M_{\parallel} < 1.5 GeV/ c^2 , is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\text{II}} < 2.5$ GeV/ c^2 , is sensitive to the early-stage temperature
- ρ-meson mass spectrum is affected by the surrounding medium (τ_{ρ} = 1.3 fm/*c* < τ_{fb})

- Low mass region (IMR), M_{\parallel} < 1.5 GeV/ c^2 , is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\text{II}} < 2.5$ GeV/ c^2 , is sensitive to the early-stage temperature
- ρ-meson mass spectrum is affected by the surrounding medium ($τ_{p}$ = 1.3 fm/*c* < $τ_{fb}$)
- Mass spectrum for $1.0 < M_{\text{II}} < 1.5$ GeV/ c^2 , is affected by V-A chiral mixing of ρ and a_1 is expected
	- Mass modification is sensitive to chiral symmetry restoration (CSR)

- Low mass region (IMR), M_{\parallel} < 1.5 GeV/ c^2 , is sensitive to the late-stage temperature
- Intermediate mass region (IMR), $1.5 < M_{\text{II}} < 2.5$ GeV/ c^2 , is sensitive to the early-stage temperature
- ρ-meson mass spectrum is affected by the surrounding medium ($τ_{p}$ = 1.3 fm/*c* < $τ_{fb}$)
- Mass spectrum for $1.0 < M_{\text{II}} < 1.5$ GeV/ c^2 , is affected by V-A chiral mixing of ρ and a_1 is expected
	- Mass modification is sensitive to chiral symmetry restoration (CSR)

T affected by the blue-shift mass in the invariant mass spectrum of the interval (0–10%) Pb collisions at p*s*NN = 5*.*5 TeV. Left panel: in-medium radiation plus decays of the ^r meson at the end Inverse slope *T*eff in the mass spectrum is **NOT** affected by the blue-shift

Dielectrons from BESII

• Clear enhancement compared to cocktail contribution in both low mass region and intermediate mass region at 27 and 54.4 GeV have been observed

Clear enhancement compared to cocktail contributions in both nt compared to cocktail contribution in both low mass reg

Talk at QM2022

• Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV) **i**
narge density normalize Charge density higher than SPS (Inln @ 1 spectral in 54.4 and 27 GeV Au+Au

Temperature from excess dilepton from BESII Low mass region (LMR) = late stage Low Mass Tegion (Livin) – K

Talk at QM2022

- Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV) **i**
narge density normalize Charge density higher than SPS (Inln @ 1 spectral in 54.4 and 27 GeV Au+Au
- T_{LMR} is similar despite significant differences in collision energy and system size collisions are similar to the collision of the collision of the collision of the collision of the collision of
The collisions are similar to the collision of the collision of the collision of the collision of the collisio The signal designation of the signal des
- T_{LMR} 54.4GeV $= 174 \pm 15$ MeV **differences** in collision **energy** collision and the set of the set and system in the system in

and system in the system
	- T_{LMR}^{27GeV} = 167 \pm 20 MeV
	- T_{LMR} ^{17.3GeV} = 165 \pm 4 MeV

Temperature from excess dilepton from BESII Low mass region (LMR) = late stage Low Mass Tegion (Livin) – K

Talk at QM2022

- Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV) **i**
narge density normalize Charge density higher than SPS (Inln @ 1 spectral in 54.4 and 27 GeV Au+Au
- T_{LMR} is similar despite significant differences in collision energy and system size collisions are similar to the collision of the collision of the collision of the collision of the collision of
The collisions are similar to the collision of the collision of the collision of the collision of the collisio The signal designation of the signal des
- T_{LMR} 54.4GeV $= 174 \pm 15$ MeV **differences** in collision **energy** collision and the set of the set
- T_{LMR}^{27GeV} = 167 ± 20 MeV close to T_{pc}
	- T_{LMR} ^{17.3GeV} = 165 \pm 4 MeV

Temperature from excess dilepton from BESII Low mass region (LMR) = late stage Low Mass Tegion (Livin) – K

Talk at QM2022

- Charge density normalized mass spectrum in Au+Au collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV) **i**
narge density normalize Charge density higher than SPS (Inln @ 1 spectral in 54.4 and 27 GeV Au+Au
- T_{LMR} is similar despite significant differences in collision energy and system size collisions are similar to the collision of the collision of the collision of the collision of the collision of
The collisions are similar to the collision of the collision of the collision of the collision of the collisio The signal designation of the signal des
- T_{LMR} 54.4GeV $= 174 \pm 15$ MeV **differences** in collision **energy** collision and the set of the set and system in the system in

and system in the system
	- T_{LMR}^{27GeV} = 167 \pm 20 MeV
	- T_{LMR} ^{17.3GeV} = 165 \pm 4 MeV

close to T_{pc}

And leftiperature at the fate stage, but a fonger inetime in Same temperature at the late stage, but a longer lifetime medium than SPS

Temperature from excess dilepton from BESII Low mass region (LMR) = late stage Low Mass Tegion (Livin) – K

Talk at QM2022

New since HP 2020 *<u>Example from excess dilepton from BESII*</u> **• Property of the contributions of the contribution of the co • Probe different stages of temperature evolution** *ρ* **Temperature from excess dilepton from BESII Intermediate mass region (IMR) = early stage**

• Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)

Talk at QM2022

- Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- *T*_{IMR} at 27 and 54.4 GeV is larger than 17.3 GeV
	- T_{LMR} ^{54.4GeV} = 338 \pm 59 MeV
	- T_{LMR} ^{27GeV} = 301 \pm 60 MeV
	- T_{LMR} ^{17.3GeV} = 205 \pm 12 MeV

New since HP 2020 *<u>Example from excess dilepton from BESII*</u> **• Property of the contributions of the contribution of the co • Probe different stages of temperature evolution** *ρ* **Temperature from excess dilepton from BESII Intermediate mass region (IMR) = early stage**

Talk at QM2022

- Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- *T*_{IMR} at 27 and 54.4 GeV is larger than 17.3 GeV
	- T_{LMR} ^{54.4GeV} = 338 \pm 59 MeV
	- T_{LMR} ^{27GeV} = 301 \pm 60 MeV
	- T_{LMR} ^{17.3GeV} = 205 \pm 12 MeV

New since HP 2020 *<u>Example from excess dilepton from BESII*</u> **• Property of the contributions of the contribution of the co • Probe different stages of temperature evolution** *ρ* **Temperature from excess dilepton from BESII Intermediate mass region (IMR) = early stage**

Higher than LMR

Talk at QM2022

- Charge density normalized mass spectrum in AuAu collisions at 54.4 and 27 GeV are similar but higher than SPS (InIn @ 17.3 GeV)
- *T*_{IMR} at 27 and 54.4 GeV is larger than 17.3 GeV
	- T_{LMR} ^{54.4GeV} = 338 \pm 59 MeV
	- T_{LMR} ^{27GeV} = 301 \pm 60 MeV
	- T_{LMR} ^{17.3GeV} = 205 \pm 12 MeV

New since HP 2020 *<u>Example from excess dilepton from BESII*</u> **• Property of the contributions of the contribution of the co • Probe different stages of temperature evolution** *ρ* **Temperature from excess dilepton from BESII Intermediate mass region (IMR) = early stage**

Initial temperature depends on collision energy

Higher than LMR

Talk at QM2022

• The models describe LMR (late-stage) thermal dilepton, but IMR (early-stage) is underestimated

– This is the opposite result of non-prompt direct photon measured by the PHENIX experiment at 200 GeV

- -

System size and µ_B dependence</mark>

System size and µ_B dependence</mark>

- The models describe LMR (late-stage) thermal dilepton, but IMR (early-stage) is underestimated – This is the opposite result of non-prompt direct photon measured by the PHENIX experiment at 200 GeV
- Temperature from dilepton doesn't depend on the system size
	- Temperature of the early stage is expected to depend on
	- Late-stage LMR temperature is nearly at the phase transition temperature

System size and µ_B dependence</mark>

- The models describe LMR (late-stage) thermal dilepton, but IMR (early-stage) is underestimated – This is the opposite result of non-prompt direct photon measured by the PHENIX experiment at 200 GeV
- Temperature from dilepton doesn't depend on the system size
	- Temperature of the early stage is expected to depend on
	- Late-stage LMR temperature is nearly at the phase transition temperature

No clear centrality dependence • Temperature in **LMR** is close to phase transition temperature (Tpc) The information to reveal the QCD phase diagram is gradually being gathered

- It is challenging to extract the dielectron excess at LHC energy due to the huge background
	- Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively

Talk at QM2022

- It is challenging to extract the dielectron excess at LHC energy due to the huge background
	- Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively
- Direct γ has been measured in PbPb collisions at 5.02 TeV
	- γincl measured with photon conversion method is used

 $\mathbf -$ କ

although **at the upper edge of the syst. unc. at low**

 $p_{\rm T}$

D DIRECT PHOTON IN CENTRAL PROPERTY AT $\frac{3}{2}$ $\frac{15}{2}$ **\frac{1**

- It is challenging to extract the dielectron excess at LHC energy due to the huge background
	- Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively
- Direct γ has been measured in PbPb collisions at 5.02 TeV – γincl measured with photon conversion method is used
- Data is larger than prompt photon predicted by pQCD systematically
	- Data is described by several models within uncertainties

 γ first γ γ^{inc} and methods with photon methods with γ^{inc} ا Walpe Witch Systemati *γ γ*inc *γ*^{di}r^{ect} ← *k y*^{inc} *r*

although **at the upper edge of the syst. unc. at low**

 $p_{\rm T}$

- It is challenging to extract the dielectron excess at LHC energy due to the huge background
	- Contribution from light flavors and heavy flavors are dominant contributions for LMR and IMR, respectively
- Direct γ has been measured in PbPb collisions at 5.02 TeV – γincl measured with photon conversion method is used
- Data is larger than prompt photon predicted by pQCD systematically
	- Data is described by several models within uncertainties

 Ω curcho Ω at θ + θ H.Van Hees et al.: thermal radiation from QGP + hadronic many body system Ω .: direct photons in microscopic transport models in Ω P.Dasgupta et al.: thermal photons with fluctuations in the initial stage It is very difficult and challenging measurement at LHC $\ ^{p_{\rm T}}$ due to huge huge background

 γ first γ γ^{inc} and methods with photon methods with γ^{inc} ا Walpe Witch Systemati *γ γ*inc *γ*^{di}r^{ect} ← *k y*^{inc} *r*

 \rightarrow

- Dielectron excess has been extracted
	- Die Programmen external using N_{coll} and N_{coll} – LFs are measured results, but N_{coll} scaled HF contribution w/ and w /o R_{AA} effect is used

Dilepton excess at LHC energies

Dilepton excess at LHC energies

- Dielectron excess has been extracted
	- Die Programmen external using N_{coll} and N_{coll} – LFs are measured results, but N_{coll} scaled HF contribution w/ and w /o R_{AA} effect is used
- R.Rapp: fireball and hadronic many body system id systematic l • Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution
	- ons with systematic (and statistical) uncertainties ons – LMR: Combinatorial electrons
	- IMR: Contribution from HF ($\sigma_{cc}^{\text{LHC}} \sim 10 \times \sigma_{cc}^{\text{RHIC}}$)

 \rightarrow

Dilepton excess at LHC energies

- Dielectron excess has been extracted
	- Die Programmen external using N_{coll} and N_{coll} – LFs are measured results, but N_{coll} scaled HF contribution w/ and w /o R_{AA} effect is used
- R.Rapp: fireball and hadronic many body system id systematic l • Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution
	- ons with systematic (and statistical) uncertainties ons – LMR: Combinatorial electrons
	- IMR: Contribution from HF ($\sigma_{cc}^{\text{LHC}} \sim 10 \times \sigma_{cc}^{\text{RHIC}}$)

 \rightarrow

• The following improvement is necessary (besides statistics)

Dilepton excess at LHC energies

- Dielectron excess has been extracted
	- Die Programmen external using N_{coll} and N_{coll} – LFs are measured results, but N_{coll} scaled HF contribution w/ and w /o R_{AA} effect is used
- R.Rapp: fireball and hadronic many body system id systematic l • Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution

 \rightarrow

- ons with systematic (and statistical) uncertainties ons – LMR: Combinatorial electrons
- IMR: Contribution from HF ($\sigma_{cc}^{\text{LHC}} \sim 10 \times \sigma_{cc}^{\text{RHIC}}$)
- The following improvement is necessary (besides statistics) – LMR: Reducing background electrons by improving detector material, or altering target lepton
- 0 0.5 1 1.5 2 2.5 3 3.5 10^{-4} 10^{-1} 10^{-1} [−]¹ 10 1 10 $\widetilde{\mathcal{C}}$ (GeV/ ee al
Sla excess $\rm \delta$ ד∣≍ **Excess** = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG \times <N \Rightarrow) Excess = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG \times <N_{coll}> \times $R_{AA}^{c/b \rightarrow e}$) QGP + in-medium ρ (R.Rapp, Adv. HEP. 2013 (2013) 148253) QGP + in-medium ρ (PHSD, PRC 97 (2018) 064907) Arrows show upper limits at 95% C.L. ALICE Preliminary 0–10% Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV $0.2 < \rho_{_{\rm T,e}}^{} < 10 \; {\rm GeV}/c, \, |\eta_{_{\rm e}}| < 0.8$ $0.0 < \rho_{_{\rm T,ee}} < 8.0 \ \mathrm{GeV/}c$ **ALI−PREL−507342** Hadronic matter

 $\bar{}$

0 0.5 1 1.5 2 2.5 3 3.5 10^{-4} 10^{-1} 10^{-1} [−]¹ 10 1 (GeV/ ee al
Sla excess $\rm \delta$ ד∣≍ **Excess** = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG \times <N \Rightarrow) Excess = Data - Cocktail (LF w/o ρ + J/ ψ + POWHEG \times <N_{coll}> \times $R_{AA}^{c/b \rightarrow e}$) QGP + in-medium ρ (R.Rapp, Adv. HEP. 2013 (2013) 148253) QGP + in-medium ρ (PHSD, PRC 97 (2018) 064907) Arrows show upper limits at 95% C.L. $0.2 < \rho_{_{\rm T,e}}^{} < 10 \; {\rm GeV}/c, \, |\eta_{_{\rm e}}| < 0.8$ $0.0 < \rho_{_{\rm T,ee}} < 8.0 \ \mathrm{GeV/}c$ **ALI−PREL−507342** Hadronic matter

Dilepton excess at LHC energies

- Dielectron excess has been extracted
	- Die Programmen external using N_{coll} and N_{coll} – LFs are measured results, but N_{coll} scaled HF contribution w/ and w /o R_{AA} effect is used
- R.Rapp: fireball and hadronic many body system id systematic l • Due to large statistical and systematic uncertainties, it is difficult to resolve the QGP contribution
	- ons with systematic (and statistical) uncertainties ons – LMR: Combinatorial electrons
	- IMR: Contribution from HF ($\sigma_{cc}^{\text{LHC}} \sim 10 \times \sigma_{cc}^{\text{RHIC}}$)

 \rightarrow

- The following improvement is necessary (besides statistics)
	-
	-

10

ALICE Preliminary

0–10% Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

 $\bar{}$ $\widetilde{\mathcal{C}}$

– LMR: Reducing background electrons by improving detector material, or altering target lepton – IMR: Improving HF determination by excellent detectors, or altering measuring rapidity

Direct photon production in high-multiplicity pp

• Significant reduction of uncertainties compared to the previous ALICE paper

Direct photon production in high-multiplicity pp

- Significant reduction of uncertainties compared to the previous ALICE paper
- Similar direct photon fraction in MB and HM pp collisions has been observed

• HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T
-

• ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T
-

• ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T
- ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV
	- This effect appears to be the disappearance of the peak in the invariant mass spectrum

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T
- ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV
	- This effect appears to be the disappearance of the peak in the invariant mass spectrum

- HADES claims ω meson is clearly visible at high p_T but disappeared at low p_T
- ALICE has reported decreasing of ω meson compared to total multiplicity in pp collisions at $\sqrt{s} = 13$ TeV
	- This effect appears to be the disappearance of the peak in the invariant mass spectrum

Look forwarding to updates from HADES

- EM probe is the most important probes in HIC
	- Temperature measurement, space-time evolution, and chiral symmetry restoration

- EM probe is the most important probes in HIC – Temperature measurement, space-time evolution, and chiral symmetry restoration
- dilepton channels
	- Improve experimental data robustness
	- New collision energies with high statistics

• Very high-quality data enable us to separate the photon emission stage with both real photon and

• Very high-quality data enable us to separate the photon emission stage with both real photon and

- EM probe is the most important probes in HIC – Temperature measurement, space-time evolution, and chiral symmetry restoration
- dilepton channels
	- Improve experimental data robustness
	- New collision energies with high statistics
- Direct photon puzzle in yield is still remaining, but the discrepancy has been reduced
	- New photon puzzle at early stage photon yield in real photon and virtual photon (dilepton)?

• Very high-quality data enable us to separate the photon emission stage with both real photon and

- EM probe is the most important probes in HIC – Temperature measurement, space-time evolution, and chiral symmetry restoration
- dilepton channels
	- Improve experimental data robustness
	- New collision energies with high statistics
- Direct photon puzzle in yield is still remaining, but the discrepancy has been reduced
	- New photon puzzle at early stage photon yield in real photon and virtual photon (dilepton)?
-

• There could be interesting relationships between low energy HIC and high multiplicity small system

Event classification by prompt photon

- •20% high p_T π⁰ suppression has been observed with 4.5 σ significance in d+Au collisions at 200 GeV
- •Study of system size dependence, p+Au, 3He+Au, is mandatory

- PHENIX has reported the existence of event selection bias with high p_T particles in d+Au collisions
- PHENIX has proposed a method to evaluate *N*_{coll} with direct γ data in each centrality

$$
R_{pA}^{\gamma} = \frac{Y_{pA}^{\gamma}(p_{\rm T})}{\langle N_{\rm coll} \rangle_{\rm Exp.} Y_{pp}^{\gamma}(p_{\rm T})} = 1 \quad \rightarrow \quad \langle N_{\rm coll} \rangle_{\rm EXP} (p_{\rm T}) = \frac{Y_{pA}^{\gamma}(p_{\rm T})}{Y_{pp}^{\gamma}(p_{\rm T})}
$$

Hydrodynamics + chiral mixing model

• The new model has been created with chiral mixing phenomena in the viscous hydrodynamics

-
- 3 scenarios have been demonstrated,

