New theoretical developments

Li Yan

Institute of Modern Physics Fudan University

Apr. 27, 2023 @ ATHIC 2023, Hiroshima

Out-of-equilibrium Quark-Gloun Plasma

• Out-of-equilibrium QGP in high energy collisions: very early times with tau < 1 fm/c

[Plenary talk by Taya, Monday]

What we have learned about attractor so far

Solved in highly symmetric cases:

Bjorken, Gubser

- Determined by two fixed points (AdS/CFT?), and a monotonic transition.
- Early-time dynamics and late-time dynamics are generically different:

$$Kn \sim 1$$

[Heller and Spanlinski, 2015, G. Denicol et al, 1709.06644, 1804.04711, Romatschke, 1704.08699, A. Kurkela et . al, PRL 124 (102301), Blaizot, LY, 1712.03865,1906.08677, J. Brewer et al., 1910.00021, ...]

In this talk, ...

• Attractor study with more involved/realistic ingredients

conformal + Bjorken symmetry conformal + broken Bjorken symmetry conformal +Bjorken symmetry+ hydro noise

with QCD critical point

Hydrodynamics

• Hydrodynamics: conservation law + gradient expansion in constitutive relation

$$\partial_{\mu}T^{\mu\nu} = 0$$
 gradient expansion in terms of Kn =
$$\frac{\text{mean free path}}{\text{system size}}$$

$$T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \sum_{n} \alpha_{n} \text{Kn}^{n}$$

• Close to local equilibrium, hydro gradient expansion is well known up to 2nd order,

$$T^{\mu\nu}-T^{\mu\nu}_{\rm ideal}={\rm Navier-Stokes\ hydro}+\begin{cases} {\rm Israel-Stewart\ hydro}\\ {\rm BRSSS\ hydro}\\ {\rm DNMR\ hydro} \end{cases}+O({\rm Kn}^3)$$

out-of-equilibrium information missing due to the truncation in gradients

Away from equilibrium: hydro attractor

• (Conformal IS) Hydro EoM w.r.t. Bjorken expansion

$$\partial_t e = -\frac{4}{3} \frac{e}{\tau} - \frac{\pi}{\tau}, \quad \pi = -\frac{4}{3} \frac{\eta}{\tau} - \tau_\pi \left(\partial_\tau \pi + \frac{4}{3} \frac{\pi}{\tau} \right)$$

- One hydro fixed point: correct description for small Kn
- Hydro misses free-streaming fixed point: pressure < 0
- Resum of hydro gradients -> hydro attractor

[Heller and Spanlinski, 2015, Basar and Dunne, PRD92,125011, Blaizot and LY, 2006.08815]

Away from equilibrium: kinetic theory attractor

Kinetic theory description: microscopic d.o.f. to macroscopic d.o.f.

Away from equilibrium: coupled moments

• Recast kinetic equation in terms of coupled moments,

[Blaizot, LY, 2017, 2018, Brewer, Yin and LY, 2021, Brewer, Scheihing, Hitschfeld and Yin, 2022]

$$\mathcal{L}_n = \int_{\vec{n}} p P_{2n}(p_z/E_p) f(\tau, \vec{p}) \quad \to \quad \partial_{\tau} \mathcal{L}_n = \frac{1}{\tau} H_{nm}^{\text{FS}} \mathcal{L}_m + H_{nm}^{\text{coll}} \mathcal{L}_m$$

- Contains information of longitudinal/transverse pressures, energy density in T^{uv} .
- Effective theory interpolates between hydro and kinetic theory: Hydro emerges at n=2.

$$\partial_{\tau} \mathcal{L}_{0} = -\frac{1}{\tau} (a_{0} \mathcal{L}_{0} + c_{0} \mathcal{L}_{1})$$

$$\partial_{\tau} \mathcal{L}_{1} = -\frac{1}{\tau} (a_{1} \mathcal{L}_{1} + b_{1} \mathcal{L}_{0})$$

$$\mathcal{L}_{0} = e$$

$$\mathcal{L}_{1} \sim \pi_{\eta}^{\eta} \sim P_{L} - P_{T}$$

$$\mathcal{L}_{2} : \text{non-hydro variable}$$

information of higher order can be absorbed into 2nd transport coefficients.

Away from equilibrium: coupled moments

• Recast kinetic equation in terms of coupled moments,

[Blaizot, LY, 2017, 2018, Brewer, Yin and LY, 2021, Brewer, Scheihing, Hitschfeld and Yin, 2022]

$$\mathcal{L}_{n} = \int_{\vec{n}} p P_{2n}(p_{z}/E_{p}) f(\tau, \vec{p}) \quad \to \quad \partial_{\tau} \mathcal{L}_{n} = \frac{1}{\tau} H_{nm}^{FS} \mathcal{L}_{m} + H_{nm}^{coll} \mathcal{L}_{m}$$

- Contains information of longitudinal/transverse pressures, energy density in T^{uv} .
- Effective theory interpolates between hydro and kinetic theory: Hydro emerges at n=2.

$$\partial_{\tau} \mathcal{L}_{0} = -\frac{1}{\tau} (a_{0} \mathcal{L}_{0} + c_{0} \mathcal{L}_{1})$$

$$\mathcal{L}_{0} = e$$

$$\mathcal{L}_{1} \sim \pi_{\eta}^{\eta} \sim P_{L} - P_{T}$$

$$\mathcal{L}_{1} \sim \pi_{\eta}^{\eta} \sim P_{L} - P_{T}$$

$$\mathcal{L}_{2} : \text{non-hydro variable}$$

information of higher order can be absorbed into 2nd transport coefficients.

$$\lambda_1^{\text{kinetic}} = \frac{5}{7} \eta \tau_{\pi}$$

$$\lambda_1^{\text{N=4 SYM}} = \frac{1}{2 - \log 2} \eta \tau_{\pi}$$

$$\lambda_1 \to \lambda_1 = \frac{11}{10} \eta \tau_{\pi}$$

• With properly chosen 2nd order transport coefficient, hydro can be approximately extended to far from equilibrium systems:

Modes breaking Bjorken symmetry

[Brewer, Ko, Yan and Yin, 2212.00820]

• Generalize L-moments with broken Bjorken symmetry in momentum space,

$$L_{lm} \sim \int_{\vec{p}} p P_l^m(p_z/E_p) \cos(m\phi_p) f(t, \vec{p}) \rightarrow \partial_{\tau} L_{lm} = H L_{lm}$$

• Contains full information of energy-momentum tensor, e.g.,

$$L_{00} = T^{00} = e, \quad L_{10} = T^{0z}, \quad L_{11} = T^{0x}$$

 $L_{20} = (3T^{00} - T^{zz})/2, \quad L_{22} = 3(T^{xx} - T^{yy})$

• Residual symmetry: azimuthal rotation + parity (z to -z): reducible in subspace,

$$\psi_{ms} = \begin{cases} (L_{m,m}, L_{m+2,m}, L_{m+4,m}, \dots) & \text{parity even} \\ (L_{m+1,m}, L_{m+3,m}, L_{m+5,m}, \dots) & \text{parity odd} \end{cases}$$

Attractor behavior and energy gap: energy density

• Evolution determined via eigenmodes (RTA approximation),

$$\partial_{\tau}\psi_{ms} = -H_{ms}(\tau)\psi_{ms}$$
 and $H_{ms}\phi_{ms} = E_{ms}(\tau)\phi_{ms}$

Attractor behavior and energy gap: energy density

Evolution determined via eigenmodes,

$$\partial_{\tau}\psi_{ms} = -H_{ms}(\tau)\psi_{ms}$$
 and $H_{ms}\phi_{ms} = E_{ms}(\tau)\phi_{ms}$

T^{0x} : parity even

• Gapped at both early time and late time

T^{0z} : parity odd

• Gapped only at late time

Local equilibrium and hydrodynamics

Hydro excitations (long wavelength/small frequency) dominates system evolution

hydro pole: $w(k) = \sum (\alpha_n k^n)$

long-lived modes $\delta \sim e^{-iw(k)t}$

Local equilibrium and hydrodynamics

Hydro excitations (long wavelength/small frequency) dominates system evolution

hydro pole:
$$w(k) = \sum_{n=1}^{\infty} (\alpha_n k^n + \beta_n k^{n+1/2})$$

long-lived modes $\delta \sim e^{-iw(k)t}$

Hydro modes in and out-of equilibrium

• Evolution of poles out of equilibrium:

- 1. Early-time momentum anistropy evolves slowly.
- 2. Hydro modes does NOT evolve adabatically toward free streaming.
- 3. Gapped structure in different modes in analogy to hydro poles for Kn<1.

Hydrodynamic fluctuations and attractor

Fluctuating hydro,

[B. Schenke et. al., 2005.00621, see also C. Young, PRC89, 024913, A. Sakai et al., 2111.08963, A. De et al., 2203.02134]

$$T^{\mu\nu} = T^{\mu\nu}_{cl} + \delta T^{\mu\nu} + S^{\mu\nu} \quad \leftrightarrow \quad \langle S^{\mu\nu} S^{\alpha\beta} \rangle \sim 4T\eta$$

Scales in fluctuating hydro (close to equilibrium)

• Clear separation of scales in fluid close to equilibrium:

$$\lambda_{\rm mfp} \ll c_s \nabla^{-1}$$
 and $k^{-1} \in [\lambda_{\rm mfp}, c_s \nabla^{-1}]$

Hydro-kinetic for Bjorken flow: eq for $<\delta^2>$

• EoM of equal-time two-point correlator: [Y. Akamatsu et al, 1606.07742]

$$\tau \partial_{\tau} \bar{N}_A = -\text{relaxation} \times (\bar{N}_A - 1) - \text{expansion} \times \bar{N}_A, \qquad A = \pm \pm, T_1 T_1, T_2 T_2$$

Hydro-kinetic eq. out-of-equilibrium

• EoM of equal-time two-point correlator far from equilibrium, $w = \mathrm{Kn}^{-1} = \tau/\tau_{\pi}$

$$w(1+g(w)/4)\partial_w$$
 $\bar{N}_A(w,k^2) = -\text{relaxation} \times (\bar{N}_A - 1) - \text{expansion} \times \bar{N}_A$

time dev. along bkg attractor $g(w) \equiv \tau \partial_{\tau} \ln e_{cl}$ [Chen, Teaney and LY, 2022]

Out-of-equilibrium attractor in two-point correlator

• Attractor due to hydro fixed point at large w and k: independence of initial condition

Renormalization of hydro fields

• Hydro fields get renormalized by correlators, e.g., [P. Kovtun et al, PRD84, 025006(2016), Y. Akamatsu et al, 1606.07742]

$$\langle T^{\tau\tau} \rangle = T_{cl}^{\tau\tau} + \sum_{i} \frac{\langle \delta T^{0i} \delta T^{0i} \rangle}{e + P} = \underbrace{T_{cl}^{\tau\tau} + T_{\Lambda}^{\tau\tau}}_{T_{R}^{\tau\tau}} + \underbrace{\Delta T^{\tau\tau}}_{long-time\ tail}$$

where,

$$T_{\Lambda}^{\tau\tau} = \frac{T\Lambda^{3}}{2\pi^{2}} - \frac{\Lambda T^{3}}{4\pi^{2}} \frac{C_{\tau}}{(C_{\tau}C_{\eta})^{2}} \frac{35}{8w} \left(\frac{4}{3} + g(w)\right),$$

$$\frac{\Delta T^{\tau\tau}}{e} = \frac{w^{-3/2}}{C_{e}(C_{\tau}C_{\eta})^{3}} \sum_{n=0}^{\infty} \frac{f_{n}^{\tau\tau}}{w^{n}} \sim O(w^{-3/2}) + O(w^{-5/2}) + \dots$$

Renormalization of hydro fields

• Hydro fields get renormalized by correlators, e.g., [P. Kovtun et al, PRD84, 025006(2016), Y. Akamatsu et al, 1606.07742]

$$\langle T^{\tau\tau} \rangle = T_{cl}^{\tau\tau} + \sum_{i} \frac{\langle \delta T^{0i} \delta T^{0i} \rangle}{e + P} = \underbrace{T_{cl}^{\tau\tau} + T_{\Lambda}^{\tau\tau}}_{T_{R}^{\tau\tau}} + \underbrace{\Delta T^{\tau\tau}}_{long-time\ tail}$$

where, in equilibrium out-of-equilibrium
$$T_{\Lambda}^{\tau\tau} = \underbrace{\frac{T\Lambda^3}{2\pi^2}} \underbrace{\frac{\Lambda T^3}{4\pi^2} \frac{C_{\tau}}{(C_{\tau}C_{\eta})^2} \frac{35}{8w} \left(\frac{4}{3} + g(w)\right)}_{quad},$$

$$\frac{\Delta T^{\tau\tau}}{e} = \frac{w^{-3/2}}{C_e(C_{\tau}C_{\eta})^3} \sum_{n=0}^{\infty} \frac{f_n^{\tau\tau}}{w^n} \sim O(w^{-3/2}) + O(w^{-5/2}) + \dots$$

Renormalized attractor

Non-monotonic due to hydro noise, especially the effect of long-time tail

Evolution towards isotropization:

$$\frac{\langle P_L \rangle}{\langle e \rangle} \sim \frac{P_{L,cl}}{e_{cl}} \left(1 + \frac{3\tau^2 T_{\Lambda}^{\eta\eta}}{e_{cl}} + \frac{3\tau^2 \Delta T^{\eta\eta}}{e_{cl}} + \dots \right)$$

Trajectory through QCD phase diagram

[T. Dore, J. Noronha-Hostler and E. McLaughlin, 2007.15083]

inverse Reynolds numbers

$$\chi = \frac{\pi}{e + P}$$

$$\Omega = \frac{\Pi}{e + P}$$

- Trajectory depends on how far a system is away from equilibrium initially.
- Out-of-equilibrium contribution to entropy production. [Chattopadhyay et al., 2209.10483]

Attractor and QCD critical point

- Hydro simulations with the effect of QCD critical point: attractive behavior expected.
- Can be used to constrain the behavior of system evolution towards QCD critical point.

Summary

- Hydro can be extended to far from equilibrium (very early times), with 2nd order transport coefficients properly chosen.
- Hydro modes in equilibrium CANNOT be generalized to out of equilibrium.
- Gapped structure of hydro and non-hydro modes preserved when Kn<1.
- For Kn<1, noisy hydro affects attractor, leading to non-monotonic evolution.
- Hydro attractor expected in more realistic hydro simulations, even involving QCD critical point.

Back-up slides

Many interesting topics!

- Other plenary speakers: fluctuations, correlations, vorticity, heavy flavor, small system, ...
- [Lipei Du: 94]: Baryon stopping structure in initial state reproduces dN/dy as well as v₁ for energies from 200 GeV to 7.7 GeV.
- [A. Sakai, 191]: Dilepton production with chiral symmetry restoration.
- [T. Nishimura, 185]: Dilepton production and QCD phase transition.
- [A. Monnai: parallel, Mon. 14:00]: Direct photon spectrum with a momentum cut.
- [J. Sun: parallel, Mon, 14:40]: Direct photon with weak magnetic field.

Attractor and resum of gradients

• Two-moments and 2nd order hydro transport coefficients:

	a_1	b_1	$ au_{\pi}$
Two moments/DNMR hydro	38/21	8/15	$ au_R$
Navier-Stoke Hydro	undetermined	$2\eta/(arepsilon au_R)$	0+
Isreal-Stewart Hydro	$a_0 \text{ or } a_0 + 21/10$	$2\eta/(\varepsilon\tau_R) = 8/15$	$ au_{\pi}$
BRSSS Hydro	$a_0 + \frac{2C_{\lambda_1}}{3C_{\tau}}$	$2a_0 \frac{C_\eta}{C_\tau}$	$\frac{C_{\tau}}{T}$
Kinetic-Hydro	31/15	8/15	$ au_R$

Redefined 2nd order transport coefficients: regulate free-streaming fixed point in hydro

T^{xx} - T^{yy} : parity even

Gapped only at late time

Decay of non-flow v₂

• non-flow contribution to v_2 survives up to relaxation time, therefore,

$$\frac{\tau_{\mathcal{E}}}{\tau_R} \sim \left(\frac{R}{\tau_0}\right)^{1/3} \left(\frac{7.14}{\nu\pi} \frac{dN_{\text{ch}}}{dy}\right)^{1/3} \frac{1}{4\pi(\eta/s) c_s} \rightarrow \frac{dN_{ch}}{dy}|_{critical} \approx 20$$