hapark@cern.ch University of Tsukuba, Japan

Physics Motivation

Nuclear PDF (nPDF)

Color Glass Condensaste (CGC)

Detector

ALICE experiment

- **ALICE** (A Large Ion Collider Experiment) is a detector dedicated to heavy-ion physics at the Large Hadron Collider (LHC)
- It is designed to study the physics of strongly interacting matter at extreme energy densities, where a phase of matter called quark-gluon plasmas forms.

FoCal detector design

FoCal-E

- 20 Layers (LG+HG Si detectors + W absorbers)
- Dimensions ~ 90 cm × 98 cm \times 20cm
- Disigned for :
- ✓ Measurement of direct photons
- ✓ Measurement of high p_T **neutral pions** (PbPb vs pp)
- Granularity optimized to enable photon separation (~ 5mm distance)

FoCal-H

- Transversally segmented calorimeter thickness \sim 6 λ Located behind FoCal-E
- (reduce shower blow up)
- Designed for: ✓ Studying the dynamics of
 - hadronic matter with photons and jets (isolation capabilities (single hadron ~ 20-25%))

FoCal-E Pad design concept

 FoCal-E pad layers are designed for measuring very high energy photons and good separation from decay photons

- 18 layers of Si Pad sensors interleaved with Tungsten absorbers Samples the longitudinal development of EM showers
- Si pad layers size ~ 1 × 1 cm^2
- Absorber: 3.5 mm Tungsten
- Each sensor: $8_{rows} \times 9_{columns}$ pad layers
- 5 aggregator (+interface) boards per stack

Read-out: HGCROCV2 chip

- Provides ADC, TOT (12bit, lsb:50ps), TOA (10bit, lsb:25ps)
- 40MHz trigger pulse
- Dynamic range MIP ~ 10pC
- Data transfer ~ 960 KHz with internal circular buffer

ADC: Analog to digital converter **TOT**: Time of threshold

TOA: Time of arrival

Experiment

Test Beams in 2022

- Test beam experiment on PS and SPS with hadron and electron beam at CERN in 2022
 - There were a number of engineers and scientists representing the FoCal-E and FoCal-H groups
- Data needed for Technical Design Report (TDR) of FoCal

For **FoCal E-Pad** ...

Characterization of HGCROCV2 **ADC** and **TOT** at different electron energies

Energy Linearity and Energy Resolution using ADC and TOT

First results

PADs MIP Response at PS using hadron beam

(1) Position scan 15 GeV hadron beams

Most of the cells display clear MIP peak

(2) Testing the HGCROC2 capabilities:

- Gain tests (128 possible setups) Testing MIP peak and background
- Optimization of the bunch crossing phases
- Validate simulations results

(3) Test of the silicon response and full depletion voltage:

- Testing the p-type Hamamatsu sensors for FoCal p-type was increased for better performance
- Voltage scan from 0-500 V
- Full depletion of this sensor reached at > 300 V

Position scan, 2022 PS testbeam, FoCal-E pad layers

(1) Best choice of MIP with all channel and layers

Test Beam Results at SPS using electron beam

- TOT (∝ total deposited charge) with electron beam energy scan 60– 200 GeV
- Study of full response of HGCROC ongoing (needs combination of TOT and ADC)

(4) Energy response for different energies

 Shows expected energy dependence

(5) Longitudinal shower development Shape consistent with

expectations

Surmary & Outlook

FoCal is part of the upgrade project of ALICE during Run 4 (starting from 2029) for investigating unexplored regions of small-x and low Q^2

ALICE FoCal upgrade proposal is well on track

- Successful Test Beam campaigns during 2022. Now preparing for June 2023
- Preparations for Technical design report (TDR) ongoing
- Design of all components complete

Prototypes of all components constructed and tested successfully

- Analysis ongoing
- FoCal-E pad with HGCROC readout has energy resolution with constant term < 5%

Reference

A Forward Calorimeter (FoCal) in the ALICE experiment

- https://cds.cern.ch/record/2696471
- https://doi.org/10.22323/1.414.0317

