

High time resolution design of iTOF-MRPC and Simulation, Track reconstruction of TPC in CEE experiment.

Dongdong Hu (USTC) Dhananjaya Thakur(IMP)

State Key Laboratory of Particle Detection and Electronics Department of Modern Physics, USTC Institute of modern physics, Chinese Academy of Sciences

Outline

- Motivation
- Design of high time resolution MRPC
 - **Prototype of iTOF MRPC**
 - **Cosmic ray test system**
 - **Preliminary results**
 - **Signal transmission simulation**
- Track reconstruction of TPC
- Summary

CSR-external Target Experiment

Heavy-Ion Research Facility at Lanzhou (HIRFL-CSR)

 ✓ Provides various ion beam with incident energy in the range of 0.5~1.2GeV/u (can be as heavy as uranium)

CSR-external Target Experiment, CEE

Goals: to study the bulk properties of dense matter and to understand the quantum chromo-dynamic (QCD) phase diagram Fix target

Intensity : 10^6 pps (particles per second) Reactivity : 1%Reaction rates : 10 kHzluminosity : $0.3 \cdot 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$

- The TPC is the most critical detector in the CEE set-up which provides charged particle track position, momentum, and charge
- The TOF system is critical for the identification of charged particles in the GeV energy region.

Main task of iTOF and TPC

Main task

In the middle rapidity, or polar angle region $(30^{\circ} - 107^{\circ})$ in the laboratory frame, the measurement and identification systems for charged particles are iTOF combined with TPC.

- ✓ Small polar angle : MWDC + eTOF
- ✓ Large polar angle : TPC + **iTOF**
- ✓ Start time : T0

Requirements of iTOF

- ➤ Geant4
- ➢ Generator: UrQMD-3.4
- Eeam energy: $E_{kin} = 1.0 \text{ GeV/u}$ particle: Ar-Ar
- ➢ Magnetic field: 0.5 T
- > Target position: Z = -35 cm
- > Collision parameter: $b=1 \sim 10$ fm (1000, 2000...)

Requirements:Time resolution:30-40psOccupancy:10%-15%Particle flux:50 Hz/cm²Efficiency:>95%

How to improve the time resolution of MRPC

MRPC(Multi-gap Resistive Plate Chamber)

[Nucl. Instrum. Meth. A 374.CERN-PPE-95-166 (1995): 132-136]

- Good time resolution (~60 ps)
- Cheap and can be made in large areas
- Not affected by magnetic fields
- High granularity

$$\sigma_{MRPC} = \sqrt{\frac{d_{gap}}{N_{gap}\lambda} \frac{U}{(\alpha - \eta)d_{gap}\nu}}$$

 d_{gap} : gap width N_{gap} : gap quantity

- λ : the number of clusters per unit length
- $\alpha \eta$: Effective Townsend coefficient
- v: Electron drift velocity
- U: Factor of avalanche statistics

[Journal of Instrumentation 12.03 (2017): C03029]

The way to get higher time resolution:

- Reduce gap thickness
- More gaps
- Improve the time resolution of front end electronics(FEE)
- Choose a good working gas

High time resolution MRPC designed by CERN

- 4×6 gaps
- 0.16mm gap width
- Waveform sampling readout
- 20ps time resolution
- 95% efficiency

Prototype of inner TOF

Gap	width	0.160mm		
	quantity	4 × 6		
Glass thickness		0.55mm		
Readout strip		$(7mm + 3mm) \times 32$ Double end readout		
Impedance		30Ω		

Cosmic Ray Test platform

Working gas: 90% Freon + 5% Sulfur hexafluoride + 5% isobutene

Trigger: Plastic scintillator + PMT

Electronics: FEE + TDM, with time resolution of 9 ps

Gas transportation

Hydromechanics simulation: Fluent

MRPC structure and the blocker: design and optimize

Gas exchange mode: from passive spread to active airflow

Color represents airflow speed

- Greatly reduce the use of working gases, environmentally friendly
- Slowing aging effect
- Improve the time resolution

Liu, Z., Carnesecchi, F., Williams, M. C. S., Zichichi, A., & Zuyeuski, R. (2019). Timing performance study of Multigap Resistive Plate Chamber with different gap size. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 927, 396-400.

MRPC raw signal

iTOF-MRPC impedance

Cosmic ray test results

More MRPC geometry

- The more nodes, the more serious the reflection
- When the signal pick up
 from the middle readout
 PCB, Leading edge of the
 output signal is steeper
 than that from bottom PCB
 readout

Signal velocity and Modal dispersion

Middle PCB | Bottom PCB

Readout strips

PCB

Signal velocity	1.855 × 10 ⁸ m/s	1.587× 10 ⁸ m/s	1.827 × 10 ⁸ m/s

Top PCB

When extracting from the middle PCB, the signal of Bottom PCB has been delayed for about 80ps,which balance the arriving time of signals of each PCB.

The average signal velocity is the weighted average of the signal velocity of each mode calculated using the multi-conductor transmission line theory. Each mode has a different signal velocity, known as modal dispersion

Signal velocity and Modal dispersion

Length of readout strip:

Signal integrity

To study the signal integrity, we completely absorb the signal from the other side so that only the first peak is left behind, eliminating the interference of the reflected peak.

2 30	3000 15 Ohm transmission line					Rise time does not change much with the transmission
Amplitude()	2000 30 Ohm transmission line 	Port	Transmission line	leading	trailing	line impedance.
10	1000	50ohm	150hm	276ps	372ps	$Z_{transmission line} > Z_{port} \longrightarrow$ back edge slow down
	50ohm Po	rt ^{500hm}	30ohm	267ps	247ps	$Z_{transmission \ line} < Z_{port} \longrightarrow \text{overshoot occur}$
() 20 E)	0 1 2 3 2000 50 Ohm transmission line	⁴ 50ohm	50ohm	264ps	246ps	itof
Amplitude	1500	50ohm	75ohm	261ps	307ps	Transmission line Port
10	1000	50ohm	100ohm	263ps	370ps	
5	500	100oh m	50ohm	264ps	206ps	
	1000hm Pe	ort 100oh m	75ohm	259ps	207ps	$Z_{transmission \ line} \neq Z_{iTOF} \longrightarrow \text{ amplitude of the first}$
	0 1 2 3	4 Fime(ns) 100oh m	100ohm	259ps	231ps	peak reduced

Impedance matching

If the output port is connected in parallel with a 43 ohm resistor, it can be completely impedance matched

First peak	$1.72 \text{ V} \longrightarrow 1.07 \text{ V}$
Reflection	$41\% \longrightarrow 7\%$
Rise time	261 ps \rightarrow 266 ps
Fall time	$236 \text{ ps} \longrightarrow 262 \text{ ps}$

Reflection is significantly reduced.

TPC Simulation and cluster reconstruction

Simulation and digitization:

- position of ionization electrons
- > For each pad, convolute the time for electrons arrive with electronics (SAMPA chip) response function

Cluster reconstruction:

The poster: L04 Simulation, Digitalization and Track reconstruction in Time Projection Chamber of Future CSR-External target Experiment at HIRFL

TPC Tracking

CEEROOT

Target (0, -35)

Hit position After mergin

Target

Ó X [cm] 20

Sector 1

Sector 0

Official Repository: https://gitee.com/CEESM/CeeRoot

- Apply CA to reconstruct hit triplet/multiplets
- Connect neighboring triplet to • track
- Fit the track candidates by Genfit using Kalman fitter
- Merge the tracks
 - Merge the short tracks to long track in each sector
 - Merge the long tracks crossed the sectors
 - Refit the merged tracks and ٠ remove the duplicated tracks

- Improved the time resolution of MRPC
- Study the signal integrity of iTOF, reduce reflection and leading edge of the signal becomes steeper at the same time.
- Study the gas transportation model of MRPC.
- Simulation, digitization, and Hit Reconstruction is presented for the TPC.
- The single track (π^+) tracking performance:

✓ CPU time 16 sec. for 100 multiplicity
✓ when the Efficiency ~ 92 %, fakes~ 20%

• Momentum resolution is below ~3.5

Thank you

Tracking performance

- > CPU time for 1 event, 70 tracks using 4 sectors is 5.9 sec. for CA and 3.4 sec for KF.
- Fake rate ~ 20 %, when the Efficiency ~ 92 % (with loose cuts)

Single core CPU is used						
Model name:	<pre>Intel(R) Xeon(R)</pre>	Gold	6330	CPU	0	2.00GHz
Stepping:	6					
CPU MHz:	800.000					
CPU max MHz:	3100.0000					
CPU min MHz:	800.0000					

Multiplicity	Triplets (CA+KF)	Multiplets (CA+KF)
70	112.83 sec.	9.2 sec.
100	172 sec.	16.4 sec.

Momentum resolution and DCA

- > Momentum resolution is below $\sim 3.5\%$.
- \blacktriangleright DCA is below ~ 1.5 mm

ATHIC2023

IMP

backup

ATHIC2023

