Contribution ID: 65

Type: Poster

Production of Ω NN and $\Omega\Omega$ N in ultra-relativistic heavy-ion collisions

Tuesday 25 April 2023 16:20 (20 minutes)

The studies of multi-strangeness hypernuclei help us further understand the interaction between hyperons and nucleons. This work discusses the productions of triple-baryons including Ω , namely ΩNN and $\Omega\Omega N$, their decay channels and the baryon number dependence of productions. A variation method is used in calculations of bound states and binding energy of ΩNN and $\Omega\Omega N$ with the potentials from the HAL-QCD's results. The productions of ΩNN and $\Omega\Omega N$ are predicted by using a blast-wave model plus coalescence model in ultra-relativistic heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV and 2.76 TeV. The decay channel are simply discussed based on the coupled channels appeared in HAL-QCD calculation. Furthermore, plots for baryon number dependent yields of different baryons (N and Ω), their dibaryons and hypernuclei are made and the production rate of a more exotic tetra-baryon ($\Omega\Omega NN$) is extrapolated.

Theory / experiment

Theory

Group or collaboration name

Primary authors: ZHANG, Liang (Shanghai Institute of Applied Physics, Chinese Academy of Sciences); ZHANG, Song (Fudan University (CN)); MA, Yugang (Fudan University (CN))

Presenter: ZHANG, Liang (Shanghai Institute of Applied Physics, Chinese Academy of Sciences)

Session Classification: Poster Session

Track Classification: Hadron interactions and exotics