

Measurement of excited **Y** suppression with observation of **Y**(3S) in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in CMS

Soohwan Lee¹

on behalf of the CMS Collaboration

¹Korea University

Introduction

- Probing QCD matter with quarkonia is effective way to understand both hot and cold effects in heavy-ion collisions
 - Produced in initial hard scattering (~1 fm), able to encode information of evolution of QGP via interaction
- Heavy mass $Q\bar{Q}$ in low $p_T \rightarrow$ good candidate to test NRQCD

CMS

Statistical/Uncorrelated

Quarkonia to probe the QGP

- Hot and cold effects in action lacksquarein heavy-ion collisions
 - Cold nuclear matter effects \rightarrow nPDF, nuclear absorption, Cronin effect
 - Hot medium interactions \rightarrow color screening, Landau damping, dissociation, regeneration

Correlated

Gluo-dissociation

Inelastic parton scatter at NLO

Statistical effect strong for charmonia Recent findings[1,2] favor (correlated) recombination also for bb

> [1] Singh, Ganesh, Mishra [2] N. Brambilla et al.

Nuclear modification factor (R_{AA})

- Suppression of quarkonia measured via R_{AA}
- Excited states **Y** measurement is challenging

$$R_{AA}(p_{T}, y) = \frac{dN_{Y,corr}^{AA}/dp_{T}}{\langle T_{AA} \rangle d\sigma_{Y}^{PP}/dp_{T}}$$

 $\langle T_{AA} \rangle :$ average of nuclear overlap function

- Small S/B ratio in AA $\rightarrow \uparrow$ statistical uncertainty
- ➡ Y(3S) ambiguous in previous measurement (limit of 2015 PbPb data)

CMS

First observation of Y(3S) in AA

- Using CMS 2018 PbPb data
- Signal extracted with unbinned extended likelihood fit
- Y(3S) observed in PbPb collisions with > 5 σ !
 - Signal clearly visible thanks to data control with BDT

arXiv:2303.17026

- Sequential suppression apparent RAA: Y(1S) > Y(2S) > Y(3S) in scanned p_T and (N_{part}) spectra
- No clear dependence on transverse momentum

- Double ratio $< 1 \rightarrow$ heavier suppression for Y(3S) than Y(2S)
- Cancel out nPDF effects advantageous for theory calculation

• Many models to predict the sequential suppression pattern

 Precise experiment data to improve model parameterization

- 1. Couple Boltzmann transport model
- 2. Comover interaction model
- 3. Transport, kinetic rate eq. (TAMU)
- 4. pNRQCD in open quantum system

Upsilon (nS) in PbPb

CMS

Theory ↔ Experiment

- Level of suppression for excited states sensitive for model
 - Tension between model predictions

More about recombination

- Role of recombination in bottomonia non negligible
 - Continuous contribution through centrality
 - Substantial for excited states

More about recombination

- \bullet Recombination at work over a large p_T range
 - Significant portion in low p_T excited states \rightarrow correlated (diagonal) recombination

Theory ↔ Experiment

- No recombination increase double ratio
 - absolute regeneration component ratio larger than double ratio

- Bottomonium suppression heavier for all three S-wave states
 - Sequential also in pPb \rightarrow QGP droplet? comover?
 - Important to constrain both system!

arXiv:2304.03929

Comparison with RHIC

- Similar suppression for $Y(1S) \rightarrow$ suppression already saturated at RHIC?
 - More data to be conclusive!
- Y(2S) vs. (N_{part}) different shape \rightarrow system size/temperature effect?

S-wave QQ in PbPb

arXiv:2303.17026

- Clear difference in low p_T between charm and beauty sector
 - \propto Binding energy
 - Different recombination source

Questions to ask

 $\land Z_{EP}$

- Are we correctly describing the heavy $q\bar{q}$ production?
- What is the polarization of quarkonia in QGP?
- Final stage effects and feed-down contribution

Summary

- First observation of $\mathbf{Y}(3S)$ meson in AA
- Measured R_{AA} of both excited **Y** states strengthening sequential suppression picture
- Better constraint on theoretical models with new data & observables

Thank you

Comover effect fwd vs. bwd?

CMS

More about recombination

arXiv:2303.17026

KOREA UNIVERSITY