Constraining the equation of state with heavy quarks in the quasi-particle model of QCD matter

Feng-Lei Liu
Central China Normal University

in collaboration with Wen-Jing Xing, Xiang-Yu Wu, Guang-You Qin, Shanshan Cao and Xin-Nian Wang

Based on Eur.Phys.J.C 82 (2022) 4, 350 and Arxiv: 2304.08787
Athic 2023

Outline

(1) Background
(2) The quasi-particle linear Boltzmann transport (QLBT) model
(3) Application of QLBT: Bayesian extraction for QCD EoS and transport coefficients
(4) Summary
(1) Background
(2) The quasi-particle linear Boltzmann transport (QLBT) model

3 Application of QLBT: Bayesian extraction for QCD EoS and transport coefficients
(4) Summary

Heavy Qurak: Hard Probe in QGP

- Ideal probe of QGP.
- $m_{Q} \gg T_{Q G P}$
- $m_{Q} \gg \Lambda_{\mathrm{QCD}}$
- Explore the transport properties of QGP and EoS for the QGP through the energy loss of heavy quarks.
- Extract \hat{q} and diffusion coefficient D_{s}
- Extract EoS

Extract transport coefficient and EoS

Phys.Rev.C 90 (2014) 1, 014909

Phys.Rev.C 103 (2021) 5, 054904

- Jet(Bulk) transport coeffcients and EoS are constrained separately by jet quenching (bulk observables).
- In this work, a direct Bayesian extraction of the QGP EOS using heavy flavor observables based on QLBT model.
(1) Background
(2) The quasi-particle linear Boltzmann transport (QLBT) model
(3) Application of QLBT: Bayesian extraction for QCD EoS and transport coefficients

4 Summary

The quasi-particle linear Boltzmann transport (QLBT) model QLBT model : improve LBT model ${ }^{1}$ by modeling QGP as a collection of quasi-particles(Quasi particle model, QPM). The temperature-dependent effective masses of quarks and gluons Phys. Rev.D84 (2011)

$$
\begin{aligned}
& m_{g}^{2}(T)=\frac{1}{6}\left(N_{c}+\frac{1}{2} N_{f}\right) g^{2}(T) T^{2} \\
& m_{u, d, s}^{2}(T)=\frac{N_{c}^{2}-1}{8 N_{c}} g^{2}(T) T^{2}
\end{aligned}
$$

The pressure can be calculated by summing over the contributions from different constituents:

$$
P(T)=\sum_{i} d_{i} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{3 E_{i}(p, T)} f_{i}(p, T)-B(T),
$$

[^0]
Quasi Particle model : describe the equation of state

The energy density of the system can be obtained as follows:

$$
\epsilon(T)=\sum_{i} d_{i} \int \frac{d^{3} p}{(2 \pi)^{3}} E_{i}(p, T) f_{i}(p, T)+B(T)
$$

As for the entropy density, the bag constant $B(T)$ cancels:

$$
s(T)=\frac{\epsilon(T)+P(T)}{T}
$$

Motivated by the perturbative QCD calculation, we use the following parametric form to model the temperature dependence of the coupling $g(T)$:

$$
g^{2}(T)=\frac{48 \pi^{2}}{\left(11 N_{c}-2 N_{f}\right) \ln \left[\frac{\left(a T / T_{c}+b\right)^{2}}{1+c e^{-d\left(T / T_{c}\right)^{2}}}\right]}
$$

where a, b, c and d are parameters.
Standard process: Lattice QCD EOS $\rightarrow g^{2}(T) \rightarrow$ observables
Inverse question: observables $\rightarrow g^{2}(T) \rightarrow$ Lattice QCD EOS ?

Linear Boltzmann transport model

The evolution of the phase space distribution f_{1} of a given parton (denoted as " 1 " below) is described using the Boltzmann equation as follows:

$$
p_{1} \cdot \partial f_{1}\left(x_{1}, p_{1}\right)=E_{1}\left(C_{e l}\left[f_{1}\right]+C_{\text {inel }}\left[f_{1}\right]\right)
$$

where C_{el} and $C_{\text {inel }}$ are collision integrals arising from elastic and inelastic processes.

Elastic (collisional)

Elastic Process

The elastic scattering rate for parton " 1 " through a given channel can be obtained by integrating the transition rate over the exchange momentum \vec{k} :

$$
\begin{aligned}
\Gamma_{12 \rightarrow 34}\left(\vec{p}_{1}\right) & =\int d^{3} k w_{12 \rightarrow 34}\left(\vec{p}_{1}, \vec{k}\right)=\frac{\gamma_{2}}{2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}} \int \frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \int \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}} \\
& \times f_{2}\left(\vec{p}_{2}\right)\left[1 \pm f_{3}\left(\overrightarrow{p_{3}}\right)\right]\left[1 \pm f_{4}\left(\vec{p}_{4}\right)\right] S_{2}(s, t, u) \\
& \times(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)\left|M_{12 \rightarrow 34}\right|^{2},
\end{aligned}
$$

- The leading order pQCD matrix elements are taken for $\left|M_{12 \rightarrow 34}\right|^{2}(\mathrm{Qq} \rightarrow \mathrm{Qq}, \mathrm{Qg}$ $\rightarrow \mathrm{Qg}$).
- Kinematic cut: $S_{2}(s, t, u)=\theta\left(s \geq 2 \mu_{D}^{2}\right) \theta\left(t \leq-\mu_{D}^{2}\right) \theta\left(u \leq-\mu_{D}^{2}\right)$
- Note that the quasi-particle masses of the thermal partons have been included in evaluating the Mandelstam variables s, t, u and density distribution of quasi particles.

Elastic Process

Elastic Scattering ($1+2 \rightarrow 3+4$ process), after introducing thermal mass, elastic scattering rate can be reduced to

$$
\begin{aligned}
& \Gamma_{12 \rightarrow 34}=\frac{\gamma_{2}}{16 E_{1}(2 \pi)^{4}} \int d E_{2} d \theta_{2} d \theta_{4} d \phi_{4} \\
& \times f_{2}\left(E_{2}, T\right)\left(1 \mp f_{4}\left(E_{4}, T\right)\right) S_{2}(s, t, u)\left|\mathcal{M}_{12 \rightarrow 34}\right|^{2} \\
& \times \frac{p_{2} p_{4} \sin \theta_{2} \sin \theta_{4}}{E_{1}+E_{2}-p_{1} \cos \phi_{4} \frac{E_{4}}{p_{4}}-p_{2} \cos \theta_{24} \frac{E_{4}}{p_{4}}}
\end{aligned}
$$

$\cos \theta_{24}=\sin \theta_{2} \sin \theta_{4} \cos \phi_{4}+\cos \theta_{2} \cos \theta_{4}$

$$
E_{4}=\frac{\left(E_{1}+E_{2}\right) B \pm \sqrt{A^{2}\left(m_{4}^{2} A^{2}+B^{2}-m_{4}^{2}\left(E_{1}+E_{2}\right)^{2}\right)}}{\left(E_{1}+E_{2}\right)^{2}-A^{2}}
$$

with $A=\left|\overrightarrow{p_{1}}\right| \cos \theta_{4}+\left|\overrightarrow{p_{2}}\right| \cos \theta_{24}$, and

Inlastic Process

Inlastic Process:The distribution function of radiated gluon (hight twist) ${ }^{2}$

$$
\frac{d N_{g}}{d x d k_{\perp}^{2} d t}=\frac{2 \alpha_{s} C_{A} P(x) k_{\perp}^{4}}{\pi\left(k_{\perp}^{2}+x^{2} M^{2}\right)^{4}} \hat{q} \sin ^{2}\left(\frac{t-t_{i}}{2 \tau_{f}}\right)
$$

where k_{\perp} is the gluon transverse momentum with respect to the parent parton, α_{s} is the strong coupling. $P(x)$ is the vacuum splitting function, τ_{f} is the formation time of the radiated gluon in the form of $\tau_{f}=2 E x(1-x) /\left(k_{\perp}^{2}+x^{2} M^{2}\right)$ with M being the mass of the parent parton, and t_{i} denotes the initial time or the production time of the parent parton.

[^1]Two types of coupling vertices

- For vertices that connect to the jet partons (heavy quarks):

$$
g^{2}(E)=\frac{48 \pi}{\left(11 N_{c}-2 N_{f}\right) \log \left[\left(A E / T_{c}+B\right)^{2}\right]}
$$

- For vertices that connect to the medium partons

$$
g^{2}(T)=\frac{48 \pi^{2}}{\left(11 N_{c}-2 N_{f}\right) \ln \left[\frac{\left(a T / T_{c}+b\right)^{2}}{1+c e^{-d\left(T / T_{c}\right)^{2}}}\right]}
$$

- where A, B, a, b, c, d are parameters.
(1) Background
(2) The quasi-particle linear Boltzmann transport (QLBT) model
(3) Application of QLBT: Bayesian extraction for QCD EoS and transport coefficients
(4) Summary

Bayesian analysis

Calibration of the QLBT calculation (using $T_{\mathrm{c}}=150 \mathrm{MeV}$)

One observes that after the Bayesian calibration, our QLBT model is able to provide a reasonable description of the D meson observables in heavy-ion collisions.

- One observes that after the Bayesian calibration, our QLBT model is able to provide a reasonable description of the D meson observables in heavy-ion collisions.
- Similar results can be obtained for $T_{c}=154 \mathrm{MeV}$ compared to $T_{c}=150 \mathrm{MeV}$.

Posterior distributions of the model parameters

- Over 800 sets of $\boldsymbol{\theta}$ for prior calculation.
- Posterior distributions of the model parameters, together with their correlations, upper triangle (green) for using $T_{\mathrm{c}}=154 \mathrm{MeV}$, lower triangle (blue!50!dark) for $T_{\mathrm{c}}=150 \mathrm{MeV}$.

Posterior distributions of the model parameters

mean	WB	HotQCD
A	1.1060	1.0936
B	0.0867	0.1131
a	2.0634	3.0117
b	0.7148	0.3362
c	4.7047	8.2149
d	0.5105	0.4524

- Reasonable constraints on these model parameters have been obtained for same T_{c}.
- Extracted parameters is sensitive to T_{c}.

The extract EoS (T^{3} rescaled entropy density)

- One observes that the heavy flavor observables do provide constraints on the QGP EoS.
- The extracted EoS with $T_{c}=150 \mathrm{MeV}$ agrees well with the WB lattice data that shares the same T_{c}.
- Some deviation can be observed from HQ data: a larger T_{c}, terminates early, higher entropy density.

The transport coefficient

- Our constriants are consistent with other model results as well as direct lattice QCD results.
- One may also calculate the temerature dependent shear viscosity of the quasi-particle system using the relaxtion time approximation.
(1) Background
(2) The quasi-particle linear Boltzmann transport (QLBT) model
(3) Application of QLBT: Bayesian extraction for QCD EoS and transport coefficients
(4) Summary

Summary

- Within the QLBT model for jet and heavy quarks transport in QGP which evolves according to the CLVisc hydrodynamics and a hybrid fragmentation-coalescence model for hadronization, We have carried out a Bayesian analysis of the experimental data on D meson spectra and anisotropy v_{2} at both RHIC and LHC.
- We realize a simultaneous constraint on the properties of the QGP and hard probes.
- The EoS we extract for the QGP is consistent with the lattice QCD data.
- The heavy quark diffusion coefficient we obtain agrees with results from other model and lattice calculations.

Thanks

Backup: Temperature dependent bag constant

The energy density ϵ of the system is obtained from the pressure through the thermodynamic relationship $\epsilon(T)=T d P(T) / d T-P(T)$, where pressure P of system only depend on T.
In order to have above thermodynamic consistency, the following relationship has to be satisfied

$$
\left(\frac{\partial P_{q p}}{\partial m_{i}}\right)_{T, \mu}=0, \quad i=u, d \ldots
$$

which gives rise to a set of equations of the form

$$
\frac{\partial B}{\partial m_{i}}+d_{i} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{m_{i}}{E_{i}} f_{i}\left(E_{i}\right)=0
$$

Bag constant B is Temperature dependent due to Temperature dependent effective thermal mass of quasi particles.

Backup: Spatial diffusion coefficient

$$
\begin{aligned}
& \hat{q}=\sum_{b c d} \frac{\gamma_{b}}{2 E_{a}} \int \prod_{i=b, c, d} \frac{d^{3} p_{i}}{2 E_{i}(2 \pi)^{3}} f_{b}\left|\mathscr{M}_{a b \rightarrow c d}\right|^{2} S_{2}(\hat{s}, \hat{t}, \hat{u}) \\
& \quad \times(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{c}-p_{d}\right)\left[\vec{p}_{c}-\left(\vec{p}_{c} \cdot \hat{p}_{a}\right) \hat{p}_{a}\right]^{2} \\
& D_{\mathrm{s}}(2 \pi T)=8 \pi T^{3} / \hat{q}
\end{aligned}
$$

Backup: Prior range of parameters

Parameters	Prior Range $\left(T_{\mathrm{c}}=150 \mathrm{MeV}\right)$	Prior Range $\left(T_{\mathrm{c}}=154 \mathrm{MeV}\right)$
a	$[0.18,4.5]$	$[0.26,15.0]$
b	$[0.5,1.2]$	$[0.1,0.8]$
c	$[-2.0,5.0]$	$[-4.0,20.0]$
d	$[0.35,0.7]$	$[0.25,0.65]$
A	$[0.05,0.16]$	$[0.05,0.18]$
B	$[0.6,3.0]$	$[0.6,3.2]$

Table: The ranges of model parameters used in the prior distributions, for two different values of T_{c}.

Backup: Bayesian analysis

Backup: Shear viscosity

The formulas for the viscosities η are derived for a quasi-particle description with bosonic and fermionic constituents S. Plumari, W. M. Alberico, V. Greco, C. Ratti, Phys. Rev. D84 (2011)

$$
\eta=\frac{1}{15 T} \sum_{i} d_{i} \int \frac{d^{3} p}{(2 \pi)^{3}} \tau_{i} \frac{\vec{p}^{4}}{E_{i}^{2}} f_{i}\left(1 \mp f_{i}\right)
$$

$d^{3} p=p^{2} d p \sin \theta d \theta d \psi$.
In relaxtime approximation, shear viscosity depends on collision relax time τ_{i} given by (HTL):

$$
\tau_{q}^{-1}=2 \frac{N_{C}^{2}-1}{2 N_{C}} \frac{g^{2} T}{8 \pi} \ln \frac{2 k}{g^{2}}, \quad \tau_{g}^{-1}=2 N_{C} \frac{g^{2} T}{8 \pi} \ln \frac{2 k}{g^{2}}
$$

where g is the coupling obtained and k is a parameter which is fixed by requiring that τ_{i} yields a minimum of one for the quantity $4 \pi \eta / s$.

Backup: Guarantee E and p conservation for $2 \rightarrow 2+n$ process

First do $2 \rightarrow 2$ process, record q_{\perp} and p_{2}

$$
\begin{aligned}
& p_{3}=p_{1}-q-k, \\
& p_{4}=p_{2}+q
\end{aligned}
$$

Using on shell condition and E and p conservation:

$$
\begin{aligned}
\left(p_{1}-q-k\right)_{0}^{2} & =\left(p_{1}-q-k\right)_{x}^{2}+\left(p_{1}-q-k\right)_{y}^{2}+\left(p_{1}-q-k\right)_{z}^{2}+M^{2} \\
\left(p_{2}+q\right)_{0}^{2} & =\left(p_{2}+q\right)_{x}^{2}+\left(p_{2}+q\right)_{y}^{2}+\left(p_{2}+q\right)_{z}^{2}
\end{aligned}
$$

One can get q_{0} and q_{z} from above equation which used E and p conservation.

[^0]: ${ }^{1}$ Zhu, Wang, PRL 2013; He, Luo, Wang, Zhu, PRC 2015; Cao, Tan, Qin, Wang, Phys.Rev.C 94 (2016) 1, 014909; Phys.Lett.B 777 (2018) 255-259

[^1]: ${ }^{2}$ Guo, Wang, PRL 2000, Majumder, PRC 2012; Zhang, Wang, Wang, PRL 2004

