

Hiroshima, Japan

Transverse momentum broadening in expanding medium induced cascades

Souvik Priyam Adhya, IFJ-PAN, Krakow, Poland

Fellowship Agreement No: PAN.BFD.S.BDN.612.022.2021, PASIFIC Program, Horizon 2020 within the Marie Skłodowska Curie Actions.

Introduction to jet quenching

- A Jet is an energetic and collimated bunch of particles produced in a high-energy collision.
- Jets are extended objects, ideal to study *space time evolution*.
- *energy is lost* in soft particles at large angles.

Vacuum vs medium induced jets

Vacuum picture :

1. Jets originate from energetic partons that successively branch (similarly to an accelerated electron that radiates photons). 3. Diverges for *soft* and *collinear* radiation. 4. Successive branchings are ordered from larger to smaller angles.

Jets in the QGP: Multi-scale problem !

Medium picture :

- Many interactions occur during the formation of a soft gluon. LPM suppression of small angle radiation.
- No collinear divergence!

•

In QCD: formation time of gluons decrease with energy decrease!

 $dP = \alpha_s C_R \frac{d\omega \ d\theta}{\omega}$

 $\checkmark \quad t_f = \frac{\omega}{k_\perp^2} \sim \sqrt{\frac{\omega}{\hat{q}}} \quad \longrightarrow \quad$

Setting up the picture

Propagation of a fast parton in dense medium Branching Scattering Dynamical Pichne Information on * soft" and "hard" gluons in angular space?

What's new here?

• Inclusion of finite medium size effects.

- Expanding medium with varying time for the onset of the quenching.
- Scaling relations in effective lengths between expanding and static medium profiles, successful in describing R_{AA} and v₂ of jets with sensitivity to medium expansions recently.
- and soft jets in angular Exploratory study of h regions.

Adhya, Kutak, Placzek, Rohrmoser, Tywoniuk, 2022 Adhya, Salgado, Spousta, Tywoniuk 2022. Adhya, Salgado, Spousta, Tywoniuk 2020.

~ 9/

 $\hat{q} = \frac{d < k_T^2}{-}$

Static medium % (const.)

t (fm)

Single gluon emission spectra

• The *single* gluon emission spectra in BDMPS-Z* formalism are given as :

$$\frac{dI}{dz}^{static,soft} \simeq \frac{\alpha_s P(z)}{\pi} \sqrt{\frac{\omega_c}{2\omega}}$$

$$\frac{dI^{static}}{d\omega} \propto \frac{\alpha_s}{\pi} P(z) Re \log(\cos(\Omega_0 L))$$

$$\frac{dI^{BJ}}{d\omega} \propto \frac{\alpha_s}{\pi} P(z) Re \log \left[\left(\frac{t_0}{L+t_0} \right)^{1/2} (Bessel's fnc.$$

The expanding spectra has finite size dependence.

$$\kappa(z) = \sqrt{[1 - z(1 - z)]/[z(1 - z)]}$$

* Multiple soft scattering approximation

$$\Omega_0 L = \frac{(1-i)}{2} \kappa(z)\tau$$

P(z) = Alteralli Parisi splitting functions

spectrum: Arnold, 2009.

In-medium splitting rates

$$\mathscr{K}^{static}(z) \to \mathscr{K}^{expanding}(z,\tau)$$

 $\mathscr{K}(z)^{static,soft} \propto \alpha_s P(z)\kappa(z)$

$$\mathscr{K}(z)^{static} \propto \alpha_s P(z)\kappa(z)Re\left[(i-1)\tan\left(\frac{1-i}{2}\kappa(z)\tau\right)\right]$$

$$\mathscr{K}(z,\tau)^{BJ} \propto \frac{\alpha_s}{\pi} P(z)\kappa(z)Re\left[\left(\frac{\tau_0}{\tau+\tau_0}\right)^{1/2}(Bessel's func)\right]$$

- The rates for all the profiles are similar at very low evolution time or length of medium.
- In the Bjorken, the presence of the factor Sqrt[$\tau_0/(\tau_0 + \tau)$] leads to the dumping of the splitting rate for $\tau > \tau_0$.

Adhya, Salgado, Spousta, Tywoniuk 2020 Scaling applications also by Caucal, Iancu, Soyez 2021

$$\kappa(z) = \sqrt{[1-z(1-z)]/[z(1-z)]$$

 $au_{ ext{eff}}$

Effective scaling parameter

$$\hat{q}_{eff}^{expo} = 4\hat{q}_0$$
$$\hat{q}_{eff}^{BJ} = 4\hat{q}_0 t_0/L \qquad \qquad \tau = \frac{\alpha_s N}{\pi}$$

In-medium gluon evolution eqn.

The gluon evolution inside a medium is described by the BDIM equation :

$$\frac{\partial}{\partial t}D(x,\mathbf{k},t) = \frac{1}{t^*} \int_0^1 dz \,\tilde{\mathcal{K}}(z,t) \left[\frac{1}{z^2} \sqrt{\frac{z}{x}} D\left(\frac{x}{z},\frac{\mathbf{k}}{z}\right) \right]$$
Netium evolved
guon spechn
Splitting
Kennel.
 $D \equiv \omega \frac{dN}{d\omega}$

$$\frac{1}{t^*} = \frac{\alpha_s N_c}{\pi} \sqrt{\frac{\hat{q}}{E}} \xrightarrow{\hat{q}} \frac{\partial u}{\partial u}$$

It Integration over all k' drops off the collision term.

t=enterbon dengen.

 $\left[+, t \right] \theta(z - x) - \frac{z}{\sqrt{x}} D(x, \mathbf{k}, t) \right] + \int \frac{d^2 l}{(2\pi)^2} C(\mathbf{l}, t) D(x, \mathbf{k} - \mathbf{l}, t)$ elastic loss term collision term

 $C(l,t) = \underline{4\pi \hat{q}}$ $L^{2}(l^{2}+m_{0}^{2})$ $L^{2}(l^{2}+m_{0}^{2})$

k = transverse momentum x = energy fraction; 0 < x < 1

ancu, Mehtar-Tani, 201[,]

2-D differential distributions

We use $k_T \sim (x \ E \ \theta)$ to analyse the behavior in angular space

• Hard-x (x ~1) regime

dominated by *leading fragment* in cascade

- Small k_T : Gaussian profile due to multiple soft-gluon scatterings.
- Large k_T : Power law suppression due to rare hard medium interactions.

• Soft-x (x << 1) regime

accumulation of soft gluons towards the *medium scale*

- Small k_T : Distribution is narrower and approx. Gaussian.
- Large k_T : No distinct transition to a power-law behavior.

Medium INduced CAScades (MINCAS) MC :

Kutak, Placzek, Straka (2018).

Let us explore the scaling between different medium profiles

The idea is to find the values of these parameters that best approximate the dynamic spectrum along the path

Recent scaling applications

$\hat{q}_0 \; [{ m GeV^3}]$	static	exponential	Bjorken
no scaling	0.2	0.2	0.2
soft scaling	0.2	0.05	1.66
optimal scaling	0.2	0.09	1.84
scaling by $\langle \omega_c \rangle$	0.2	0.1	3.33

- •The Bjorken profile depends on additional choice of (τ_0/τ) : No universal scaling.
- Good, but not perfect scaling is achieved by optimisation.
- Significant differences in q^{\wedge} for different types of medium point to the importance of precise modelling of jet quenching phenomenon.

Adhya, Salgado, Spousta, Tywoniuk, 2020.

Medium behaves different for v₂?

Elliptic flow as a function of p_T for different media

• Agreement with sensitivity of v_2 on t_0 [Andres *et. al.,2020*] which was done in more complex modelling of the collision geometry, but less complex modelling of the medium induced showering.

Adhya, Salgado, Spousta, Tywoniuk, 2022.

Elliptic flow as function of p_T for BJ initial conditions

How much energy flows out of the jet cone?

Scaling in the energy spectrum

- As one opens up the angle, recovery of more softer gluons.
- No change of harder gluons as they primarily remain collimated. \bullet
- Hard jet fragments are *sensitive* to medium expansion, softer ones are not. \bullet

Thermalisation effects Mehtar-Tani, Schlichting, Soudi, 2022

Adhya, Kutak, Placzek, Rohrmoser, Tywoniuk, 2022

Fully differential spectra

- Energy is re-distributed to larger angles for softer gluons.
- Collinear radiation with insignificant transverse mom. broadening for hard gluons.

Adhya, Kutak, Placzek, Rohrmoser, Tywoniuk, 2022

Which gluons we capture (in-cone)?

- •
- Soft sector: Gluon cascade is narrower in the expanding medium than static medium.

Adhya, Kutak, Placzek, Rohrmoser, Tywoniuk, 2022

Hard sector: Medium recovers most of the energy already at $\theta = 0.2$; insensitive to medium expansion.

Take home messages

E

M. Spousta, C. Salgado, K. Tywoniuk, K. Kutak, M. Rohrmoser, W. Placzek

• Hard partons remain *collinear*, momentum broadening pre-dominantly caused by *splittings* rather than medium collisions and transverse momentum exchanges.

• Subsequent decrease of momentum of hard partons into soft sector causes momentum broadening by transverse-momentum exchanges with medium through elastic scattering as well as subsequent splittings into softer fragments. • However, in soft sector, broadening by subsequent gluon *splittings* contributes to out of cone energy loss at large angles.

• Harder and softer jet fragments within a cone are *sensitive* to details of medium expansion.

• Cascades in expanding media *more collimated* than static media.

Looking forward to pheno applications !!

• Also working on :

Improved Opacity expansion for expanding media [Adhya, Tywoniuk (in preparation)]

ありがとう

