Flavor dependence of jet quenching in heavy-ion

collisions (arXiv:2303.14881)

Shan-Liang Zhang¹, Enke Wang¹, Hongxi Xing¹, Ben-Wei Zhang²

¹Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China

²Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

Motivation

- ► Quark-gluon plasma (QGP) is expected in heavy-ion collisions (HICs) experiments.
- ▶ Jet quenching has long been identified as a very powerful tool to investigate the properties of QGP.
- ► The interaction between an energetic parton and the QGP is sensitive to the colour charge and the mass of the parton.
- ► A separate determination of quark and gluon jet energy loss could play a significant role in revealing the fundamental color structures of the QGP and testing the color representation dependence of the jet-medium interaction. This however proves difficult, as the final state hadronic observables are a mixture of quark and gluon contributions..

We investigate the flavor dependence of jet quenching, by performing a systematic analysis of medium modifications on the inclusive jet, γ +jet, and b-jet in Pb+Pb collisions at the LHC.

Framework

The final observable of the nuclear modification factor R_{AA} in a given centrality in terms of the flavor dependent $R_{AA}^{i,C}$ can be expressed as,

$$R_{AA}^{C} = \frac{\sum_{i} R_{AA}^{i,C} d\sigma_{pp}^{i}}{\sum_{i} d\sigma_{pp}^{i}} = R_{AA}^{g,C} + \sum_{i \neq g} (R_{AA}^{i,C} - R_{AA}^{g,C}) f_{i}, \qquad (1)$$

where $f_i = d\sigma_{pp}^i / \sum_i d\sigma_{pp}^i$ is the fraction of the total jet cross section from the parton i initiated one, $R_{AA}^{i,C}$ is the flavor and centrality dependent nuclear modification factor of parton i and assumed to be factorized as [1, 2]:

$$R_{AA}^{i,C}(p_T) = \frac{\int d\Delta p_T d\sigma_{pp}^i(p_T + \Delta p_T) \otimes W_{AA}^{i,C}(x)}{d\sigma_{pp}^i(p_T)},$$
 (2)

where $x = \Delta p_T / \langle \Delta p_T \rangle$ is the scaled variable with Δp_T the amount of energy loss and $\langle \Delta p_T \rangle$ the averaged jet energy loss, which can be parametrized as $\langle \Delta p_T \rangle = \beta_i(p_T)^{\gamma_i} \log(p_T)$ following Refs. [2]. $W_{AA}^{i,C}$ is the scaled energy loss distribution of parton i in a given centrality class C of A+A collisions and can be assumed as:

$$W_{AA}^{i}(x) = \frac{\alpha_{i}^{\alpha_{i}} x^{\alpha_{i}-1} e^{-\alpha_{i}x}}{\Gamma(\alpha_{i})}$$
(3)

where Γ is the standard Gamma-function.

According to this flavor decomposition, one can extract $\alpha_i, \beta_i, \gamma_i$, for each parton flavor i to determine the flavor and centrality dependent jet energy loss distributions $W_{AA}^i(x)$ through a Bayesian analysis, which can be summarized as

$$P(\theta|data) = \frac{P(\theta)P(data|\theta)}{P(data)},$$
(4)

where $P(\theta|data)$ is the posterior distribution of parameters θ given the experimental data, $P(\theta)$ is the prior distribution of θ , $P(data|\theta)$ is the Gaussian likelihood between experimental data and the output for any given set of parameters and P(data) is the evidence. A uniform prior distribution $P(\theta)$ in the region $[\alpha_i,\beta_i,\gamma_i]\in[(0,10),(0,8),(0,0.8)]$ is used for the Bayesian analysis. We first run 1×10^6 burn-in MCMC steps to allow the chain to reach equilibrium, and then generate 1×10^6 MCMC steps in parameter space.

Cross sections in p+p and in Pb+Pb

Figure 1: Up: Transverse momentum distributions of: (a) inclusive jet, (b) γ -tagged jet, and (c) b-jet simulated by MadGraph+Pythia8 (lines) and the comparison with experimental data (samples) [3, 4, 5] in p+p collisions. The inset in (a) is the ratio of γ -tagged jet (blue solid) and b-jet (red dashed) to inclusive jet cross section. Middle: fraction of quark (Dashed blue line) and gluon (Solid red line) initiated jet of: (d) inclusive jet, (e) γ -tagged jet, and (f) b-jet in p+p collisions. Bottom: nuclear modification factor of: (g) inclusive jet, (h) γ -tagged jet, and (i) b-jet calculated by LBT (lines) and the comparison with experimental data (samples) [3, 4, 5] in Pb+Pb collisions.

- Inclusive jet spectrum is steeper than γ +jet, while b-jet have similar slope as the inclusive jet.
- For inclusive jet, gluon (quark) initiated jet dominates in low (large) p_T region. While, quark initiated jet dominates ($\sim 80\%$) γ +jet production. Gluon initiated jet contributes about 40% to b-jet.
- $ightharpoonup \gamma+{
 m jet}$ and b-jet are less suppressed than inclusive jet due to the different q/g origins and the reference spectra in p+p collisions.

Colour-charge dependence of R_{AA}

Figure 2: (left) Final fitted R_{AA} of inclusive jet (orange) and γ +jet (gray) in 0-10% and final extracted energy lose distributions of quark and gluon initiated jet . (right)The relative contribution fraction from large quark fraction to the difference between γ +jet R_{AA} and inclusive jet R_{AA} .

- ightharpoonup ho-tagged jet R_{AA} is less suppressed compared to that for inclusive jet, which is a mix effect of the slope of initial spectra and parton color-charge in p+p collisions.
- ▶ The quark-initiated jets lose less fraction of its energy and shows a weaker dependence on the jet p_T compared to gluon-initiated jets due to its color factor.
- $ightharpoonup R_{AA}^{\text{ref}}$ is shown by assuming that inclusive jet has the same quark fraction as γ +jet.
- ▶ Large quark-initiated jet fraction underlies γ +jet suppression at large p_T , while the flat spectra give the dominate contribution to γ +jet suppression at low p_T .

Centrality dependence of R_{AA}

Figure 3: (left) Data-driven fitted R_{AA} of the inclusive jet [5] and γ +jet [3] in 10-30%, 30-80% centrality bins and predictions of inclusive jet R_{AA} in 10-20%, 20-30%, 30-40% and 0-20% centrality bins as well as the comparison with experimental data [5]. (right) The centrality dependence of final fitted gluon jet (red), quark jet (blue) and inclusive jet (green) R_{AA} in Pb+Pb collisions at 5.02 TeV.

- ► All final fitted R_{AA} are in nice agreement with the experimental data.
- ► Gluon and quark initiated jet energy loss distributions are well constrained in 0-10%, 10-30%, and 30-80% centrality.
- ► The quark-initiated jet has weaker dependence on the centrality than that for gluon-initiated jet.

		α_i	eta_i	γ_i
0-10%	gluon	$5.44{\pm}2.15$	1.46 ± 0.22	0.25 ± 0.03
	quark	0.47 ± 0.06	$1.09 {\pm} 0.21$	0.24 ± 0.04
10-30%	gluon	1.48 ± 0.45	1.65 ± 0.32	0.21 ± 0.03
	quark	$3.96{\pm}1.05$	1.47 ± 0.13	$0.11 {\pm} 0.02$
30-80%	gluon	$4.84{\pm}2.72$	0.89 ± 0.14	0.14 ± 0.03
	quark	2.28 ± 0.88	$1.07 {\pm} 0.07$	$0.07 {\pm} 0.01$

Table 1: Parameters $[\alpha_i, \gamma_i, \beta_i]$ of quark and gluon jet energy loss distribution from Bayesian fits to experimental data [3, 5] on inclusive jet and γ +jet suppressions at 5.02 TeV.

Parton-mass dependence of R_{AA}

Figure 4: (Color online) (a): final fitted R_{AA} of b-jets (lime green lines), inclusive jet (magenta lines) and γ -tagged jet (yellow lines) and the comparison with experimental data [3, 4, 5]. The data-driven extracted: (b) R_{AA} of gluon (red), light quark (blue), and b-quark (green) initiated jets, (c) The ratio of $R_{AA}^{b}/R_{AA}^{quark}$, (d) the ratio of $R_{AA}^{b-jet}/R_{AA}^{jet}$. The quark mass effect (green) and less gluon fraction effect (yellow) to the ratio of $R_{AA}^{b-jet}/R_{AA}^{jet}$.

- ► *b*-jets is less suppressed compared to inclusive jet due to the mixture of mass effect and color effect.
- ► The quark mass effect and color charge effect have comparable impacts to the ratio $R_{AA}^{b\text{-jet}}/R_{AA}^{\text{jet}}$, though their influence may decrease significantly at $p_T \sim 300 \text{ GeV}/c$.

References

- [1] Y. He, L. G. Pang and X. N. Wang, Phys. Rev. Lett. **122**, no.25, 252302 (2019)
- [2] Y. He, S. Cao, W. Chen, T. Luo, L. G. Pang and X. N. Wang, Phys. Rev. C **99**, no.5, 054911 (2019)
- [3] [ATLAS], [arXiv:2303.10090 [nucl-ex]].
- [4] [ATLAS], [arXiv:2204.13530 [nucl-ex]].
- [5] M. Aaboud *et al.* [ATLAS], Phys. Lett. B **790**, 108-128 (2019)