Contribution ID: 147

Type: Poster

Jet shape depending on the gradient of jet energy loss in heavy-ion collisions

Tuesday 25 April 2023 17:00 (20 minutes)

Jet shape is studied with a linear Boltzmann transport model for event-by-event simulations of photon-tagged jets in heavy-ion collisions. The transverse momentum asymmetry A_{\perp} is shown to increase with the initial transverse position when the gradient of jet transport coefficient \hat{q} increases until at the edge of the nonuniform medium. On one hand, the shape of the photon-tagged jet selected by the smaller A_{\perp} events is "fatter" for the transverse momentum distribution inside the jet due to stronger jet quenching. On the other hand, the jet shape with higher p_T^{jet} is "thinner" due to surface emission of the initial jets. Our numerical results show that the different choices for both final observables A_{\perp} and p_T^{jet} demonstrate different initial jet creation cites and therefore different jet shapes depending on the gradient of \hat{q} .

Theory / experiment

Theory

Group or collaboration name

Author: XIAO, Yuxin (CCNU)

Co-authors: Dr HE, Yayun (South China Normal University); PANG, LongGang (Central China Normal University); Dr WANG, Xin-Nian (Lawrence Berkeley National Lab. (US)); ZHANG, Hanzhong (IOPP, CCNU)

Presenter: XIAO, Yuxin (CCNU)

Session Classification: Poster Session

Track Classification: Jets and medium response