A Large N Expansion for Minimum Bias

Based on: Andrew Larkoski, TM, JHEP 2110094 (2021) [arXiv:2107.04041]

Tom Melia, Kavli IPMU
ATHIC 2023, April 26th

Propose and discuss a framework that can provide a first principles effective description of minimum bias events

Minimum bias: experimentally, some minimal trigger, typically some forward calorimeter activity

Soft QCD, where strong nature of interactions dominate. Ergodic

CMS Experiment at the LHC, CERN
Datz recorded: 2010-3u-0s 02:25:58:839811 GMT (04:25:58 GEST) RRun/EveM 139779 / 4994190

From first principles?

EFT is a powerful symmetry based approach

This one power counts using more unusual expansion parameter $1 / \mathrm{N}$, with N number of particles in the event

Shift symmetry (goldstone boson story?)

Fractional dispersion (non-locality?)

Big picture

$$
\begin{array}{r}
d \sigma\left(p_{a}, p_{b}, p_{1}, \ldots, p_{N}\right)=\sigma_{N}\left(p_{a}, p_{b}, p_{1}, \ldots, p_{N}\right) \delta^{(4)}\left(p_{a}+p_{b}-p_{1}-\ldots-p_{N}\right) \prod_{i=1}^{N} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \\
\text { Momentum conservation On-shell }
\end{array} \begin{aligned}
& \text { Compact (Stiefel) } \\
& \begin{array}{l}
\text { Manifold } \\
\text { Henning, TM } \\
\text { arxiv:1902.06747 }
\end{array}
\end{aligned}
$$

Big picture

$$
d \sigma\left(p_{a}, p_{b}, p_{1}, \ldots, p_{N}\right)=\sigma_{N}\left(p_{a}, p_{b}, p_{1}, \ldots, p_{N}\right) \delta^{(4)}\left(p_{a}+p_{b}-p_{1}-\ldots-p_{N}\right) \prod_{i=1}^{N} \delta\left(p_{i}^{2}-m_{i}^{2}\right)
$$

Nice to have

$$
=1+\sum_{l=1} c_{l} Y_{l}\left(\left\{p_{i}\right\}\right)
$$

Big picture

$$
\begin{aligned}
& \text { Momantimmancaristinn } n_{n-c h a l l} \\
& \text { Multipole moment, } \ell \\
& =1+\sum c_{l} Y_{l}\left(\left\{p_{i}\right\}\right) \\
& l=1 \quad \text { Harmonics }
\end{aligned}
$$

Reasons to seek first principles approach
 Equal footing

Treat both small and large systems, at both low and high energy, all within the same framework.

Potential to aid in elucidation of nature of small scale (p p collision) collective phenomena in QCD; jet quenching. Not relying on any particular model

Multipole moment, ℓ
"Track a harmonic" as evidenet?
$=1+\sum_{l=1} c_{l} Y_{l}\left(\left\{p_{i}\right\}\right)$

What will be addressed; what will not

Assume that events are binned in multiplicity, N
i.e. Not attempt a description of fluctuations in multiplicity

Therefore, can capture how normalized distributions, binned in N , change as a function of N, and as a function of Q

We take the large N limit at fixed Q, meaning we do not consider a scaling of Q and N such that Q / N (c.f. 't Hooft coupling) remains finite. (Although this could be interesting)

What will be addressed; what will not

Proto-EFT approach: power-counting, symmetries

But no sense of framework in which to calculate e.g. quantum corrections (yet)

Testing self-consistency of assumptions, understanding their consequences to explain broad features of data

Physical / directly measurable quantities only (e.g. no 'centrality')

Outline

Power Counting and Symmetries

Simple Predictions, comparison to data

Power counting and symmetries for pp/AA min bias

1. We focus on $\eta \sim 1 \ll \eta_{\text {max }}$
2. Everything massless $p_{\perp} \gg m_{\pi}$
3. Beam momentum is $\mathrm{O}(1)$ of CoM
4. Number of $\eta \ll \eta_{\max }$ particles $N \gg 1$
5. $\left\langle p_{\perp}\right\rangle \sim \sqrt{\left\langle p_{\perp}^{2}\right\rangle}$

Mean transverse momentum representative of all particles' momentum

1. $O(2)$ symmetry about beam
2. $\eta \rightarrow-\eta$ along the beam
3. S_{N} permutation sym in all detected particles

Blind to all but momentum
4. $\eta \rightarrow \eta+\Delta \eta$ symmetry

Never move particles out of detection region into beam, and vice versa

Effective matrix element

$$
\sigma=\int_{\operatorname{LIPS}\left(N+N N_{B_{a}+}+N_{B_{b}}\right)}^{\sigma_{N}\left(p_{1}, \ldots, p_{N,},\left\{p_{a}\right\},\left\{p_{b}\right\}\right)} \delta^{(4)}\left(p_{a}+p_{b}-\sum_{i=1}^{N} p_{i} \sum_{i=1}^{N_{B_{a}}} p_{a_{i}}-\sum_{i=1}^{N_{B_{b}}} p_{b_{i}}\right)
$$

Effective matrix element

Effective matrix element

$$
\sigma=\int_{\operatorname{LIPS}\left(N+N_{B_{a}}+N_{B_{b}}\right)} \sigma_{N}\left(p_{1}, \ldots, p_{N},\left\{p_{a_{i}}\right\},\left\{p_{b_{i}}\right\}\right) \delta^{(4)}\left(p_{a}+p_{b}-\sum_{i=1}^{N} p_{i}-\sum_{i=1}^{N_{B_{a}}} p_{a_{i}}-\sum_{i=1}^{N_{B_{b}}} p_{b_{i}}\right)
$$

$$
\begin{aligned}
& =\int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} \int_{\operatorname{LIPS}(N)} f\left(k^{+} k^{-}\right) \widetilde{\sigma}_{N}\left(p_{1}, \ldots, p_{N} ; k^{+} k^{-}\right) \delta\left(k^{-}-\sum_{i=1}^{N} k_{i}^{-}\right) \delta\left(k^{+}-\sum_{i=1}^{N} k_{i}^{+}\right) \delta^{(2)}\left(\sum_{i=1}^{N} \vec{p}_{\perp_{i}}\right) \\
& \text { Light cone momentum } \\
& k^{ \pm}=E \pm p_{z}
\end{aligned}
$$

$$
\begin{aligned}
k^{ \pm} & =E \pm p_{z} \\
& =p_{\perp} e^{ \pm \eta}
\end{aligned}
$$

Integrate over boosts and

Effective "cross section", pulled out factor f

Transverse momentum conservation in large \mathbf{N} limit energy of available energy

Expansion of matrix element

$$
\begin{aligned}
& =1+\frac{c_{1}^{(2)}}{Q^{2}} \sum_{i=1}^{N} p_{\perp i}^{2}+\mathcal{O}\left(Q^{-4}\right)
\end{aligned}
$$

(After momentum conservation identities)

$$
\begin{aligned}
0 & =\left(\sum_{i=1}^{N} \vec{p}_{\perp i}\right)^{2}=\sum_{i=1}^{N} p_{\perp i}^{2}+\sum_{i \neq j}^{N} p_{\perp i} p_{\perp j} \cos \left(\phi_{i}-\phi_{j}\right) \\
k^{+} k^{-} & =\left(\sum_{i=1}^{N} p_{\perp i} e^{-\eta_{i}}\right)\left(\sum_{j=1}^{N} p_{\perp j} e^{\eta_{j}}\right)=\sum_{i=1}^{N} p_{\perp i}^{2}+\sum_{i \neq j}^{N} p_{\perp i} p_{\perp j} \cosh \left(\eta_{i}-\eta_{j}\right)
\end{aligned}
$$

Expansion of matrix element

$$
\begin{aligned}
& \sigma=\int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} \int_{\operatorname{LIPS}(N)} f\left(k^{+} k^{-}\right) \tilde{\sigma}_{N}\left(p_{1}, \ldots, p_{N}\right) \delta\left(k^{-}-\sum_{i=1}^{N} p_{\perp i} e^{\eta_{i}}\right) \delta\left(k^{+}-\sum_{i=1}^{N} p_{\perp i} e^{-\eta_{i}}\right) \delta^{(2)}\left(\sum_{i=1}^{N} \vec{p}_{\perp i}\right) \\
&=1+\frac{c_{1}^{(2)}}{Q^{2}} \sum_{i=1}^{N} p_{\perp i}^{2}+\mathcal{O}\left(Q^{-4}\right)
\end{aligned}
$$

In powers of $1 / \mathbf{N}$

Ergodicity

$$
p_{\perp} \sim Q / N
$$

(After momentum conservation identities)

$$
\Longrightarrow \frac{1}{Q^{2}} \sum_{i=1}^{N} p_{\perp i}^{2} \sim \frac{1}{N}
$$

N terms in the sum

Expansion of matrix element

$$
\begin{aligned}
& =1+\frac{c_{1}^{(2)}}{Q^{2}} \sum_{i=1}^{N} p_{\perp i}^{2}+\mathcal{O}\left(Q^{-4}\right)
\end{aligned}
$$

(After momentum conservation identities)

The inevitable 'flatness' of large \mathbb{N}

$$
\lim _{N \rightarrow \infty} \sum_{i=1}^{N} p_{\perp i}^{2} \rightarrow N\left\langle p_{\perp}^{2}\right\rangle+\mathcal{O}\left(\sqrt{N}\left\langle p_{\perp}^{2}\right\rangle\right)
$$

$$
\lim _{N \rightarrow \infty}|\mathcal{M}(1,2, \ldots, N)|^{2} \rightarrow 1+\frac{c_{1}^{(2)}}{Q^{2}} N\left\langle p_{\perp}^{2}\right\rangle+\cdots
$$

Fixing the function f to give flat-in-rapidity

$\sigma=\int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-\int_{\operatorname{LIPS}(N)}} f\left(k^{+} k^{-}\right) \widetilde{\sigma}_{N}\left(p_{1}, \ldots, p_{N}\right) \delta\left(k^{-}-\sum_{i=1}^{N} p_{\perp i} e^{\eta_{i}}\right) \delta\left(k^{+}-\sum_{i=1}^{N} p_{\perp i} e^{-\eta_{i}}\right) \delta^{(2)}\left(\sum_{i=1}^{N} \vec{p}_{\perp i}\right)$

Fixing the function f to give flat-in-rapidity

$$
\sigma=\int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} \int_{\operatorname{LIPS}(N)} f\left(k^{+} k^{-}\right) \widetilde{\sigma}_{N}\left(p_{1}, \ldots, p_{N}\right) \delta\left(k^{-}-\sum_{i=1}^{N} p_{\perp i} e^{\eta_{i}}\right) \delta\left(k^{+}-\sum_{i=1}^{N} p_{\perp i} e^{\left.-\eta_{i}\right)} \delta^{(2)}\left(\sum_{i=1}^{N} \vec{p}_{\perp i}\right)\right.
$$

Flat phase space to flat rapidity

$$
\begin{aligned}
p(\eta) & =\frac{1}{Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right) p_{\text {flat }}(\eta) \\
& =\frac{1}{Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right) 2 k^{+} k^{-}\left(k^{+} e^{\eta}+k^{-0.4} e^{-\eta}\right)^{-2} \\
& =\int_{0}^{1} d x f(x) \frac{1-x^{2}}{1+x^{2}+2 x \cosh (2 \eta)} .
\end{aligned}
$$

Take e.g. $\quad f\left(k^{+} k^{-}\right)=\frac{n}{\gamma_{E}+\log n} e^{-\frac{n+k^{2} k^{-}}{Q^{-}}}$
n now parameterises the 'cutoff' of the theory

Normalized prob $\quad 1=\frac{1}{Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right)=\int_{0}^{1} d x \log \frac{1}{x} f(x)$

Flat phase space to flat rapidity

Outline

Power Counting and Symmetries

Simple Predictions, comparison to data

The predictions include (From power counting andsymmetries)

- In the $N \rightarrow \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of the total energy of the observed final state particles
- The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation
- Scaling of multiplicity with collider energy
- By a positivity condition, all azimuthal correlations vanish as $N \rightarrow \infty$ at fixed collision energy

The predictions include (From powercounting andsymmetries)

- In the $N \rightarrow \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of the total energy of the observed final state particles
- The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation
- Scaling of multiplicity with collider energy
- By a positivity condition, all azimuthal correlations vanish as $N \rightarrow \infty$ at fixed collision energy

Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a Bessel function

$$
p_{\text {flat }}\left(p_{\perp}\right)=p_{\perp} K_{0}\left(\frac{2 N p_{\perp}}{\sqrt{k^{+} k^{-}}}\right) \quad K_{0}(z) \rightarrow \sqrt{\frac{\pi}{2 z}} e^{-z}
$$

Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a Bessel function

$$
p_{\text {flat }}\left(p_{\perp}\right)=p_{\perp} K_{0}\left(\frac{2 N p_{\perp}}{\sqrt{k^{+} k^{-}}}\right)
$$

The function f is now fixed, no wiggle-room

$$
p\left(p_{\perp}\right)=\frac{1}{Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right) p_{\text {flat }}\left(p_{\perp}\right)
$$

Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a Bessel function

$$
p_{\text {flat }}\left(p_{\perp}\right)=p_{\perp} K_{0}\left(\frac{2 N p_{\perp}}{\sqrt{k^{+} k^{-}}}\right)
$$

The function f is now fixed, no wiggle-room

$$
\left\langle p_{\perp}\right\rangle \simeq \frac{\pi^{3 / 2} Q}{8 \sqrt{n} N}
$$

$$
p\left(p_{\perp}\right)=\frac{1}{Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right) p_{\text {flat }}\left(p_{\perp}\right)
$$

Expression for distribution depends only on variable $=$ average pT

$$
p\left(p_{\perp}\right) \sim e^{-\frac{3 \pi}{4} \frac{p_{\perp}^{2 / 3}}{\left\langle p_{\perp}\right\rangle^{2 / 3}}}
$$

Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a Bessel function

$$
p_{\text {flat }}\left(p_{\perp}\right)=p_{\perp} K_{0}\left(\frac{2 N p_{\perp}}{\sqrt{k^{+} k^{-}}}\right)
$$

The function f is now fixed, no wiggle-room

$$
p\left(p_{\perp}\right)=\frac{1}{Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right) p_{\text {flat }}\left(p_{\perp}\right)
$$

See edge of validity of the effective min bias description, does not agree at high pT as one would expect

Transverse momentum distribution

Consistency 1

$$
\begin{aligned}
& \left\langle p_{\perp}\right\rangle \simeq \frac{\pi^{3 / 2} Q}{8 \sqrt{n} N} \\
& \left\langle p_{\perp}^{2}\right\rangle=\int_{0}^{\infty} d p_{\perp} p_{\perp}^{2} p\left(p_{\perp}\right)=\frac{Q^{2}}{n N^{2}}
\end{aligned}
$$

Satisfies power counting $\sqrt{\left\langle p_{\perp}^{2}\right\rangle} \sim\left\langle p_{\perp}\right\rangle$

$$
\sqrt{\left\langle p_{\perp}^{2}\right\rangle}=\frac{8}{\pi^{3 / 2}}\left\langle p_{\perp}\right\rangle \simeq 1.44\left\langle p_{\perp}\right\rangle
$$

Transverse momentum distribution

Consistency 1

$$
\begin{aligned}
& \left\langle p_{\perp}\right\rangle \simeq \frac{\pi^{3 / 2} Q}{8 \sqrt{n} N} \\
& \left\langle p_{\perp}^{2}\right\rangle=\int_{0}^{\infty} d p_{\perp} p_{\perp}^{2} p\left(p_{\perp}\right)=\frac{Q^{2}}{n N^{2}}
\end{aligned}
$$

Satisfies power counting $\sqrt{\left\langle p_{\perp}^{2}\right\rangle} \sim\left\langle p_{\perp}\right\rangle$

$$
\sqrt{\left\langle p_{\perp}^{2}\right\rangle}=\frac{8}{\pi^{3 / 2}}\left\langle p_{\perp}\right\rangle \simeq 1.44\left\langle p_{\perp}\right\rangle
$$

Consistency 2

$$
N \simeq \frac{\pi^{3 / 2} Q}{8 \sqrt{n}\left\langle p_{\perp}\right\rangle}
$$

Eta fit $n=1.6 \times 10^{5}$

$$
\begin{aligned}
& \left\langle p_{\perp}\right\rangle=0.65 \mathrm{GeV} \\
& 8 \mathrm{TeV}
\end{aligned}
$$

The predictions include (From power counting andsymmetries)

- In the $N \rightarrow \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of the total energy of the observed final state particles
- The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation
- Scaling of multiplicity with collider energy
- By a positivity condition, all azimuthal correlations vanish as $N \rightarrow \infty$ at fixed collision energy

In conclusion

Min bias is theoretically interesting: there is a curious setup for an EFT (fractional dispersions/ partition functions/unusual expansion parameter)

Provide a collection of first principles
predictions e.g.: particular scalings in \mathbf{N}; dispersion relations; scalings in s

Extra

The predictions include (From power counting andsymmetries)

- In the $N \rightarrow \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of the total energy of the observed final state particles
- The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation
- Scaling of multiplicity with collider energy
- By a positivity condition, all azimuthal correlations vanish as $N \rightarrow \infty$ at fixed collision energy

Scaling of multiplicity with collider energy

$$
\left\langle p_{\perp}\right\rangle \simeq \frac{\pi^{3 / 2} Q}{8 \sqrt{n} N} \quad \Longrightarrow N=\frac{\pi^{3 / 2} Q}{8 \sqrt{n}\left\langle p_{\perp}\right\rangle}
$$

Little n was fixed by pseudorapidity falloff

$$
\eta_{\max } \simeq \log \frac{Q}{p_{\perp \mathrm{cut}}} \simeq \log n \quad \Longrightarrow N \sim \frac{\pi^{3 / 2} \sqrt{p_{\perp \mathrm{cut}}} Q^{1 / 2}}{8\left\langle p_{\perp}\right\rangle}
$$

Scaling of multiplicity with collider energy

Scaling of multiplicity with collider energy

This framework connects the scaling of average pT with this measurement

Scaling of multiplicity with collider energy

This framework connects the scaling of average pT with this measurement

The predictions include (From mower counting and symmetries)

- In the $N \rightarrow \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of the total energy of the observed final state particles
- The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation
- Scaling of multiplicity with collider energy
- By a positivity condition, all azimuthal correlations vanish as $N \rightarrow \infty$ at fixed collision energy

Azimuthal correlations

Correlations between pairs of particles come from terms in the matrix element of the form

$$
\begin{aligned}
& |\mathcal{M}|^{2} \supset 1+\sum_{n=1}^{\infty} g_{n}\left(k^{+} k^{-}, N\right) \sum_{i \neq j}^{N} \frac{\left(\vec{p}_{\perp i} \cdot \vec{p}_{\perp j}\right)^{n}}{Q^{2 n}} \\
& \quad \supset 1+\sum_{n=1}^{\infty} g_{n}\left(k^{+} k^{-}, N\right) \sum_{i \neq j}^{N} \frac{p_{\perp i}^{n} p_{\perp j}^{n}}{Q^{2 n}} \cos \left(n\left(\phi_{i}-\phi_{j}\right)\right)
\end{aligned}
$$

Which, by ergodic assumption and power counting

$$
\sim 1+\sum_{n=1}^{\infty} \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sum_{i \neq j}^{N} \cos \left(n\left(\phi_{i}-\phi_{j}\right)\right)
$$

Azimuthal correlations

Now, azimuthal part of flat phase space as N ->Infinity

$$
\int d \Pi_{N} \rightarrow \int_{0}^{2 \pi} \prod_{i=1}^{N} \frac{d \phi_{i}}{2 \pi}
$$

Mean of sum of azimuthal correlations vanishes in this limit

$$
\int_{0}^{2 \pi} \prod_{i=1}^{N} \frac{d \phi_{i}}{2 \pi} \sum_{j \neq k}^{N} \cos \left(n\left(\phi_{j}-\phi_{k}\right)\right)=0
$$

The variance, on the other hand

$$
\sigma^{2} \equiv \int_{0}^{2 \pi} \prod_{i=1}^{N} \frac{d \phi_{i}}{2 \pi}\left[\sum_{j \neq k}^{N} \cos \left(n\left(\phi_{j}-\phi_{k}\right)\right)\right]^{2}=N^{2} \int_{0}^{2 \pi} \prod_{i=1}^{N} \frac{d \phi_{i}}{2 \pi} \cos ^{2}\left(n\left(\phi_{1}-\phi_{2}\right)\right)=\frac{N^{2}}{2}
$$

Azimuthal correlations

Going back to the matrix element

$$
|\mathcal{M}|^{2} \sim 1+\sum_{n=1}^{\infty} \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sum_{i \neq j}^{N} \cos \left(n\left(\phi_{i}-\phi_{j}\right)\right)
$$

Positivity at all points in phase space requires

$$
1 \gtrsim \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sum_{i \neq j}^{N} \cos \left(n\left(\phi_{i}-\phi_{j}\right)\right) \sim \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sigma \sim \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n-1}}
$$

Azimuthal correlations

Going back to the matrix element

$$
|\mathcal{M}|^{2} \sim 1+\sum_{n=1}^{\infty} \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sum_{i \neq j}^{N} \cos \left(n\left(\phi_{i}-\phi_{j}\right)\right)
$$

Positivity at all points in phase space requires

$$
1 \gtrsim \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sum_{i \neq j}^{N} \cos \left(n\left(\phi_{i}-\phi_{j}\right)\right) \sim \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n}} \sigma \sim \frac{g_{n}\left(k^{+} k^{-}, N\right)}{N^{2 n-1}}
$$

And so scaling with N of the coefficients to retain matrix element squared positivity in large N limit

$$
g_{n}\left(k^{+} k^{-}, N\right) \lesssim N^{2 n-1}
$$

Azimuthal correlations

Fourier expansion of probability distribution

$$
p(\Delta \phi)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{d_{n}(N)}{N^{2 n}} \cos (n \Delta \phi)
$$

In terms of matrix element coefficients

$$
\begin{gathered}
d_{n}(N)=\frac{1}{2 Q^{2}} \int_{0}^{Q} d k^{+} \int_{0}^{Q} d k^{-} f\left(k^{+} k^{-}\right) g_{n}\left(k^{+} k^{-}, N\right) \\
g_{n}\left(k^{+} k^{-}, N\right) \lesssim N^{2 n-1} \quad \boldsymbol{} \quad d_{n}(N) \lesssim N^{2 n-1}
\end{gathered}
$$

i.e. Azimuthal correlations vanish at large N

$$
\lim _{N \rightarrow \infty} \frac{d_{n}(N)}{N^{2 n}}=0
$$

Ellipticity

First non-trivial azimuthal correlation used as evidence for collective flow/ QGP

Proxy to flow in reaction plane often used is pairwise azimuthal correlation moment

The vanishing at large N predicted by the above analysis is borne out in data. May be interpreted in models with collision parameter (centrality) -> 0

$$
c_{2}(2)=\frac{1}{N}+\int_{0}^{2 \pi} d \Delta \phi p(\Delta \phi) \cos (2 \Delta \phi)=\frac{1}{N}+\frac{d_{2}(N)}{N^{4}}
$$

What does large N buy us?

Analytic probes of S-matrix

Low point amplitudes, Positivity bounds, S-matrix theory/ Bootstrap

Asymptotic analytic understanding of density of states of the theory

Analytic probes of S-matrix

Low point amplitudes, Positivity bounds, S-matrix theory/ Bootstrap

Asymptotic analytic understanding of density of states of the theory
$p(E)$

Analytic probes of S-matrix

Low point amplitudes, Positivity bounds, S-matrix theory/ Bootstrap

Asymptotic analytic understanding of density of states of the theory
$\begin{array}{ll}\overline{\text { च——n }} & p(E) \\ \text { च-antions }\end{array}$
$p(E) \sim \frac{1}{4 E \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 E}{3}}\right)$

Analytic probes of S-matrix

Low point amplitudes, Positivity bounds, S-matrix theory/ Bootstrap

Asymptotic analytic understanding of density of states of the theory
$p(E)$

For the standard model, TM, Pal 2010.08560
$p(\Delta) \sim \frac{506744913^{5 / 8}\left(\frac{31}{5}\right)^{3 / 8} 7^{7 / 8} \pi^{10}}{131072000 \sqrt[4]{2} \sqrt{13} \Delta^{55 / 8}} \exp \left(\frac{2}{3} \sqrt{2} \sqrt[4]{\frac{217}{15}} \pi \Delta^{3 / 4}-\frac{37 \sqrt[4]{\frac{15}{217}} \pi}{4 \sqrt{2}} \Delta^{1 / 4}+28 \zeta^{\prime}(-2)\right)$

Analytic probes of S-matrix

Low point amplitudes, Positivity bounds, S-matrix theory/ Bootstrap
 understanding of density of states of the theory
$p(E)$
Integer partitions

Analytic probes of S-matrix

Bootstrap approach?

pp or AA to N hadrons has some S-matrix element, that has to obey certain symmetries
Understanding of strongly coupled theories from a bootstrap approach, recently been applied to QFT, i.e. to the S-matrix
Recent: M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, '16, '17. More recently e.g. L. Cordova and P. Vieira, '18; D. Mazac and M. Paulos '18,'19; Cordova, He,
Kruczenski, Vieira, '19; Karateev, Kuhn, Penedones '19; Correia, Sever, Zhiboedov, '20; Homrich, Penedones, Toledo, van Rees, Vieira, '20
Those are 2 to 2 . This is 2 to $\mathrm{N} \gg 1$
Low point amplitudes,
Positivity bounds, S-matrix
theory/ Bootstrap

Addendum: manipulating flat phase space in the Large \mathbf{N} limit
 Pseudorapidity
 $$
\int d \Pi_{N}=(2 \pi)^{4-3 N} Q^{2 N-4} \frac{2 \pi^{N-1}}{(N-1)!(N-2)!}
$$

$$
\begin{aligned}
& p_{\text {flat }}(\eta) \sim \lim _{N \rightarrow \infty} \int \prod_{i=1}^{N}\left[p_{\perp i} d p_{\perp i} d \eta_{i} \frac{d \phi_{i}}{2 \pi}\right] \delta\left(\eta-\eta_{1}\right) \\
& \times \delta\left(k^{-}-\sum_{i} p_{i \perp} e^{\eta_{i}}\right) \delta\left(k^{+}-\sum_{i} k^{-} p_{i \perp} e^{-\eta_{i}}\right) \delta^{(2)}\left(\sum_{i} \vec{p}_{i \perp}\right) \\
& \propto \lim _{N \rightarrow \infty} \int d p_{\perp 1} p_{\perp 1} d \eta_{1} \delta\left(\eta-\eta_{1}\right)\left[\left(k^{+}-p_{\perp 1} e^{-\eta_{1}}\right)\left(k^{-}-p_{\perp 1} e^{\eta_{1}}\right)-p_{\perp 1}^{2}\right]^{N} \\
& \propto \lim _{N \rightarrow \infty} \int d p_{\perp} p_{\perp}\left(1-\frac{k^{+} e^{\eta}+k^{-} e^{-\eta}}{k^{+} k^{-}} p_{\perp}\right)^{N} \\
&= \int_{0}^{\infty} d p_{\perp} p_{\perp} e^{-\frac{k^{+} e^{\eta}+k^{-} e^{-\eta}}{k^{+} k^{-}}} N_{\perp}
\end{aligned} \quad \text { Transverse mom } \quad p_{\text {fat }}\left(p_{\perp}\right) \propto p_{\perp} \int_{-\infty}^{\infty} d \eta e^{-\frac{k^{+} e^{\eta}+k^{-} e^{-\eta}}{k^{+} k^{-}}} N p_{\perp}=p_{\perp} K_{0}\left(\frac{2 N p_{\perp}}{\left.\sqrt{k^{+} k^{-}}\right)} .\right.
$$

Lorentz invariant phase space is a Stiefel Manifold

$$
\delta^{(4)}\left(p_{a}+p_{b}-p_{1}-\ldots-p_{N}\right) \prod_{i=1}^{N} \delta\left(p_{i}^{2}-m_{i}^{2}\right)
$$

Sphere $\frac{O(N)}{O(N-1)} \circlearrowright$

$$
\text { Stiefel } \frac{O(N)}{O(N-2)} \circlearrowright
$$

(\& then Complexified, O -> U)

