A Large N Expansion for Minimum Bias

Based on: Andrew Larkoski, TM, JHEP 2110 094 (2021) [arXiv:2107.04041]

Tom Melia, Kavli IPMU ATHIC 2023, April 26th 1]

Propose and discuss a framework that can provide a first principles effective description of minimum bias events Minimum bias: experimentally, some minimal trigger, typically

some forward calorimeter activity

Soft QCD, where strong nature of interactions dominate. Ergodic

High - Energy Collisions at 7 TeV LHC @ CERN 30 03 2010

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event: 139779 / 4994190

EFT is a powerful symmetry based approach

This one power counts using more unusual expansion parameter 1/N, with N number of particles in the event

Shift symmetry (goldstone boson story?)

Fractional dispersion (non-locality?)

Big picture

$d\sigma(p_a, p_b, p_1, \dots, p_N) = \sigma_N(p_a, p_b, p_1, \dots, p_N) \,\delta^{(4)}(p_a + p_b - p_1 - \dots - p_N) \,\prod \delta(p_i^2 - m_i^2)$ i=1On-shell Momentum conservation

Compact (Stiefel) Manifold Henning, TM

arxiv:1902.06747

Big picture

$d\sigma(p_a, p_b, p_1, \dots, p_N) = \sigma_N(p_a, p_b, p_1, \dots, p_N) \,\delta^{(4)}(p_a + p_b - p_1 - \dots - p_N) \,\prod \,\delta(p_i^2 - m_i^2)$ i=1Momentum conservation **On-shell**

Nice to have

$= 1 + \sum_{l=1}^{\infty} c_l Y_l(\{p_i\})$ Harmonics

Compact (Stiefel) Manifold Henning, TM

arxiv:1902.06747

Big picture

$= 1 + \sum c_l Y_l(\{p_i\})$ Harmonics C.f. the CMB

Reasons to seek first principles approach Equal footing

- the same framework.

Treat both small and large systems, at both low and high energy, all within

Potential to aid in elucidation of nature of small scale (p p collision) collective phenomena in QCD; jet quenching. Not relying on any particular model

What will be addressed; what will not

Assume that events are binned in multiplicity, N

change as a function of N, and as a function of Q

finite. (Although this could be interesting)

- i.e. **Not** attempt a description of fluctuations in multiplicity
- Therefore, can capture how normalized distributions, binned in N,
- We take the large N limit at fixed Q, meaning we do not consider a scaling of Q and N such that Q/N (c.f. 't Hooft coupling) remains

What will be addressed; what will not

Proto-EFT approach: power-counting, symmetries

But no sense of framework in which to calculate e.g. quantum corrections (yet)

Testing self-consistency of assumptions, understanding their consequences to explain broad features of data

Physical / directly measurable quantities only (e.g. no 'centrality')

Power Counting and Symmetries

Simple Predictions, comparison to data

Outline

Power counting and symmetries for pp/AA min bias

- 1. We focus on $\eta \sim 1 \ll \eta_{\rm max}$
- 2. Everything massless $p_{\perp} \gg m_{\pi}$
- 3. Beam momentum is O(1) of CoM
- 4. Number of $\eta \ll \eta_{\max}$ particles $N \gg 1$

5.
$$\langle p_{\perp} \rangle \sim \sqrt{\langle p_{\perp}^2 \rangle}$$

Mean transverse momentum representative of all particles' momentum

- 1. O(2) symmetry about beam
- 2. $\eta \rightarrow -\eta$ along the beam
- 3. S_N permutation sym in all detected particles Blind to all but momentum

4.
$$\eta \rightarrow \eta + \Delta \eta$$
 symmetry

Never move particles out of detection region into beam, and vice versa

$\sigma = \int$

Effective matrix element

$\sigma =$

Integrate out $\eta = -\eta_{\max}$

Effective matrix element

$$= \int_0^Q dk^+ \int_0^Q dk^- \int_{\text{LIPS}(N)} f(k^+ k^-) \widetilde{\sigma}_N(p_1, \dots$$

Light cone momentum

$$k^{\pm} = E \pm p_z$$
$$= p_{\perp} e^{\pm \eta}$$

Effective "cross section", pulled out factor f

Integrate over boosts and energy of available energy

Effective matrix element

Transverse momentum conservation in large N limit

Expansion of matrix element

 $\sigma = \int_0^Q dk^+ \int_0^Q dk^- \int_{\text{LIPS}(N)} f(k^+k^-) \widetilde{\sigma}_N(p_1, \dots, q_N) dk^- \int_{\text{LIPS}(N)} f(k$ $= 1 + \frac{c_1}{c_1}$

$$, p_N) \ \delta(k^- - \sum_{i=1}^N p_{\perp i} e^{\eta_i}) \ \delta(k^+ - \sum_{i=1}^N p_{\perp i} e^{-\eta_i}) \ \delta^{(2)}(\sum_{i=1}^N p_{\perp$$

$$\frac{2}{Q^2} \sum_{i=1}^{N} p_{\perp i}^2 + \mathcal{O}(Q^{-4})$$

(After momentum conservation identities)

$$0 = \left(\sum_{i=1}^{N} \vec{p}_{\perp i}\right)^{2} = \sum_{i=1}^{N} p_{\perp i}^{2} + \sum_{i \neq j}^{N} p_{\perp i} p_{\perp j} \cos(\phi_{i} - \phi_{j}),$$
$$k^{+}k^{-} = \left(\sum_{i=1}^{N} p_{\perp i} e^{-\eta_{i}}\right) \left(\sum_{j=1}^{N} p_{\perp j} e^{\eta_{j}}\right) = \sum_{i=1}^{N} p_{\perp i}^{2} + \sum_{i \neq j}^{N} p_{\perp i} p_{\perp j} \cosh(r)$$

Expansion of matrix element

In powers of 1/N Ergodicity

 $p_{\perp} \sim Q/N$

(After momentum conservation identities)

Expansion of matrix element

 $\sigma = \int_0^Q dk^+ \int_0^Q dk^- \int_{\text{LIPS}(N)} f(k^+k^-) \widetilde{\sigma}_N(p_1, \dots)$ $= 1 + \frac{c_1}{c_1}$ The inevitable 'flatness' $\lim_{N\to\infty}\sum p_{\perp i}^2\to$ l=1

 $\lim_{N \to \infty} |\mathcal{M}(1, 2, \dots, N)|$

$$, p_N) \ \delta(k^- - \sum_{i=1}^N p_{\perp i} e^{\eta_i}) \ \delta(k^+ - \sum_{i=1}^N p_{\perp i} e^{-\eta_i}) \ \delta^{(2)}(\sum_{i=1}^N p_{\perp$$

Fixing the function f to give flat-in-rapidity

Fixing the function f to give flat-in-rapidity

 η

$$, p_N) \ \delta(k^- - \sum_{i=1}^N p_{\perp i} e^{\eta_i}) \ \delta(k^+ - \sum_{i=1}^N p_{\perp i} e^{-\eta_i}) \ \delta^{(2)}(\sum_{i=1}^N p_{\perp$$

Any function f(x) that is analytic and highly peaked at x=0 produces the 'Feynman' plateau. Effective description is an **Expansion around this**

Fall-off can be fitted for useful self-consistency check, but it is <u>outside</u> effective description, so general results are agnostic to it

Flat phase space to flat rapidity

$$\begin{split} p(\eta) &= \frac{1}{Q^2} \int_0^Q dk^+ \int_0^Q dk^- f\left(k^+k^-\right) \, p_{\text{flat}}(\eta) \\ &= \frac{1}{Q^2} \int_0^Q dk^+ \int_0^Q dk^- f\left(k^+k^-\right) \, 2k^+k^- \left(k^+e^\eta\right) \\ &= \int_0^1 dx \, f(x) \, \frac{1-x^2}{1+x^2+2x \cosh(2\eta)} \, . \end{split}$$

Take e.g.
$$f(k^+k^-) = \frac{n}{\gamma_E + \log n}$$

Normalized prob

$$1 = \frac{1}{Q^2} \int_0^Q dk^+ \int_0^Q dk^- f(k^+k^-) = \int_0^1 dx \log \frac{1}{x} f(x)$$

n now parameterises the 'cutoff' of the theory

Flat phase space to flat rapidity

$$= 1 + \sum_{l=1}^{l} c_l Y_l$$

Power Counting and Symmetries

Simple Predictions, comparison to data

Outline

The predictions include (From power counting and symmetries)

- the total energy of the observed final state particles

- Scaling of multiplicity with collider energy
- at fixed collision energy

• In the $N \to \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of

• The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation

lackside By a positivity condition, all azimuthal correlations vanish as $N
ightarrow \infty$

The predictions include (From power counting and symmetries)

- the total energy of the observed final state particles

- Scaling of multiplicity with collider energy
- at fixed collision energy

• In the $N \to \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of

• The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation

lackside By a positivity condition, all azimuthal correlations vanish as $N
ightarrow \infty$

The distribution on unsmeared phase space can be shown to be a Bessel function ¹

 $p_{\text{flat}}(p_{\perp}) = p_{\perp} K_0 \left(\frac{2Np_{\perp}}{\sqrt{k+k^-}} \right) \qquad \qquad K_0(z) \to \sqrt{\frac{\pi}{2z}} e^{-z}$

The distribution on unsmeared phase space can be shown to be a Bessel function ⁻

$$p_{\text{flat}}(p_{\perp}) = p_{\perp} K_0 \left(\frac{2N}{\sqrt{k}}\right)$$

The function f is now fixed, no wiggle-room

$$p(p_{\perp}) = \frac{1}{Q^2} \int_0^Q dk^+ \int_0^Q dk^- f(k^+)$$

 $k^{-}) p_{\text{flat}}(p_{\perp})$

The distribution on unsmeared phase space can be shown to be a Bessel function

$$p_{\text{flat}}(p_{\perp}) = p_{\perp} K_0 \left(\frac{2N}{\sqrt{k}}\right)$$

The function f is now fixed, no wiggle-room

$$p(p_{\perp}) = \frac{1}{Q^2} \int_0^Q dk^+ \int_0^Q dk^- f(k^+)$$

Expression for distribution depends only on variable = average pT

$$p(p_{\perp}) \sim e^{-\frac{3\pi}{4}} \langle$$

The distribution on unsmeared phase space can be shown to be a Bessel function ⁻

$$p_{\text{flat}}(p_{\perp}) = p_{\perp} K_0 \left(\frac{2N}{\sqrt{k}}\right)$$

The function f is now fixed, no wiggle-room

$$p(p_{\perp}) = \frac{1}{Q^2} \int_0^Q dk^+ \int_0^Q dk^- f(k^+)$$

See edge of validity of the effective min bias description, does not agree at high pT as one would expect

Consistency 1

$$\langle p_{\perp} \rangle \simeq \frac{\pi^{3/2}Q}{8\sqrt{n}N}$$

 $\langle p_{\perp}^2 \rangle = \int_0^\infty dp_{\perp} p_{\perp}^2 p(p_{\perp}) = \frac{Q^2}{nN}$

Consistency 1

$$\langle p_{\perp} \rangle \simeq \frac{\pi^{3/2}Q}{8\sqrt{n}N}$$

 $\langle p_{\perp}^2 \rangle = \int_0^\infty dp_{\perp} p_{\perp}^2 p(p_{\perp}) = \frac{Q^2}{nN}$

Consistency 2 Eta
$$N\simeq rac{\pi^{3/2}Q}{8\sqrt{n}\langle p_{\perp}
angle}$$

The predictions include (From power counting and symmetries)

- the total energy of the observed final state particles
- Scaling of multiplicity with collider energy
- at fixed collision energy

• In the $N \to \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of

• The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation

By a positivity condition, all azimuthal correlations vanish as $N \to \infty$

n conclusion

Provide a collection of first principles predictions e.g.: particular scalings in N; dispersion relations; scalings in s

Min bias is theoretically interesting: there is a curious setup for an EFT (fractional dispersions/ partition functions/unusual expansion parameter)

The predictions include (From power counting and symmetries)

- the total energy of the observed final state particles
- Scaling of multiplicity with collider energy
- at fixed collision energy

• In the $N \to \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of

• The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation

lackside By a positivity condition, all azimuthal correlations vanish as $N
ightarrow \infty$

Scaling of multiplicity with collider energy

Little n was fixed by pseudorapidity falloff

 $\langle p_{\perp} \rangle \simeq \frac{\pi^{3/2} Q}{8\sqrt{n}N} \implies N = \frac{\pi^{3/2} Q}{8\sqrt{n}\langle p_{\perp} \rangle}$

 $\eta_{\max} \simeq \log \frac{Q}{p_{\perp \text{cut}}} \simeq \log n \qquad \Longrightarrow \qquad N \sim \frac{\pi^{3/2} \sqrt{p_{\perp \text{cut}}} Q^{1/2}}{8 \langle p_{\perp} \rangle}$

Scaling of multiplicity with collider energy

Scaling of multiplicity with collider energy

This framework connects the scaling of average pT with this measurement

Scaling of multiplicity with collider energy

The predictions include (From power counting and symmetries)

- the total energy of the observed final state particles

Scaling of multiplicity with collider energy

By a positivity condition, all azimuthal correlations vanish as $N \to \infty$ at fixed collision energy

• In the $N \to \infty$ limit, the symmetries of min bias events and central limit theorem require the matrix element is exclusively a function of

• The distribution of particle transverse momentum is universal, and depends on a single parameter, with fractional dispersion relation

Correlations between pairs of particles come from terms in the matrix element of the form

$$|\mathcal{M}|^{2} \supset 1 + \sum_{n=1}^{\infty} g_{n}(k^{+}k^{-}, N) \sum_{i \neq j}^{N} \frac{(\vec{p}_{\perp i} \cdot \vec{p}_{\perp j})^{n}}{Q^{2n}}$$
$$\supset 1 + \sum_{n=1}^{\infty} g_{n}(k^{+}k^{-}, N) \sum_{i \neq j}^{N} \frac{p_{\perp i}^{n} p_{\perp j}^{n}}{Q^{2n}} \cos(n(\phi_{i} - \phi_{j}))$$

Which, by ergodic assumption and power counting

$$\sim 1 + \sum_{n=1}^{\infty} \frac{g_n(k^+k^-, N)}{N^{2n}} \sum_{i \neq j}^N \cos(n(\phi_i - \phi_j))$$

Now, azimuthal part of flat phase space as N->Infinity

$$\int d\Pi_N \rightarrow$$

Mean of sum of azimuthal correlations vanishes in this limit

$$\int_{0}^{2\pi} \prod_{i=1}^{N} \frac{d\phi_i}{2\pi} \sum_{\substack{j \neq k}}^{N}$$

The variance, on the other hand

$$\sigma^2 \equiv \int_0^{2\pi} \prod_{i=1}^N \frac{d\phi_i}{2\pi} \left[\sum_{j \neq k}^N \cos(n(\phi_j - \phi_k)) \right]^2 = N^2 \int_0^{2\pi} \prod_{i=1}^N \frac{d\phi_i}{2\pi} \cos^2(n(\phi_1 - \phi_2)) = \frac{N^2}{2}$$

$$\int_0^{2\pi} \prod_{i=1}^N \frac{d\phi_i}{2\pi}$$

$$\cos(n(\phi_j - \phi_k)) = 0$$

Going back to the matrix eleme
$$|\mathcal{M}|^2 \sim 1 + \sum_{n=1}^{\infty} \frac{g_n(x)}{n}$$

$$\sigma^{2} \equiv \int_{0}^{2\pi} \prod_{i=1}^{N} \frac{d\phi_{i}}{2\pi} \left[\sum_{j \neq k}^{N} \frac{1}{\cos(n(\phi_{j} - \phi_{k}))} N^{2n} N^{2} \int_{0}^{2\pi} \int_{1}^{N} \frac{d\phi_{i}}{\cos^{2}(n(\phi_{1} - \phi_{k}))} N^{2n} N^{2} \int_{0}^{2\pi} \int_{1}^{N} \frac{d\phi_{i}}{\cos^{2}(n(\phi_{1} - \phi_{k}))} N^{2n} N^{2} \int_{0}^{2\pi} \frac{d\phi_{i}}{\sqrt{2\pi}} \frac{d\phi_{i}}{\cos^{2}(n(\phi_{1} - \phi_{k}))} N^{2n} N^{2} \int_{0}^{2\pi} \frac{d\phi_{i}}{\sqrt{2\pi}} \frac{d\phi_{i}}{\cos^{2}(n(\phi_{1} - \phi_{k}))} \frac{d\phi_{i}}{\sqrt{2\pi}} \frac{d\phi_{i}}{\sqrt{2\pi}} \frac{d\phi_{i}}{\cos^{2}(n(\phi_{1} - \phi_{k}))} \frac{d\phi_{i}}{\sqrt{2\pi}} \frac{d\phi_{i}}{\sqrt{2\pi}}$$

 $\frac{\inf}{\frac{k^{(k^{+}k^{-},N)}}{N^{2n}}} \sum_{i\neq j}^{N} \cos(n(\phi_i - \phi_j))$

Going back to the matrix element $|\mathcal{M}|^2 \sim 1 + \sum_{n=1}^{\infty} \frac{g_n(k^+k^-, N)}{N^{2n}} \sum_{i \neq j}^N \cos(n(\phi_i - \phi_j))$

Positivity at all points in phase space requires

$$1 \gtrsim \frac{g_n(k^+k^-, N)}{N^{2n}} \sum_{i \neq j}^N \cos(n(\phi_i - \phi_j)) \sim \frac{g_n(k^+k^-, N)}{N^{2n}} \sigma \sim \frac{g_n(k^+k^-, N)}{N^{2n-1}}$$

And so scaling with N of the coefficients to retain matrix element squared positivity in large N limit

$$g_n(k^+k^-, N) \lesssim N^{2n-1}$$

Fourier expansion of probability distribution

$$p(\Delta\phi) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{d_n(N)}{N^{2n}} \cos(n\,\Delta\phi)$$

In terms of matrix element coefficients $d_n(N) = \frac{1}{2Q^2} \int_0^Q dk^+ \int_0^Q dk^- f(k^+k^-) g_n(k^+k^-, N)$

$$g_n(k^+k^-, N) \lesssim N^{2n-1}$$

i.e. Azimuthal correlations vanish at large N

 $\lim_{N \to \infty} \frac{d_n(N)}{N^{2n}}$

Ellipticity

First non-trivial azimuthal correlation used as evidence for collective flow/ QGP

Proxy to flow in reaction plane often used is pairwise azimuthal correlation moment

(centrality) -> 0

$$c_2(2) = \frac{1}{N} + \int_0^{2\pi} d\Delta\phi \, p(\Delta\phi) \, \cos(2\Delta\phi) = \frac{1}{N} + \frac{d_2(N)}{N^4}$$

The vanishing at large N predicted by the above analysis is borne out in data. May be interpreted in models with collision parameter

What does large N buy us?

Low point amplitudes, Positivity bounds, S-matrix theory/Bootstrap

Asymptotic analytic understanding of density of states of the theory

Low point amplitudes, Positivity bounds, S-matrix theory/Bootstrap

Asymptotic analytic understanding of density of states of the theory

p(E)

Integer partitions

Low point amplitudes, Positivity bounds, S-matrix theory/ Bootstrap Asymptotic analytic understanding of density of states of the theory

p(E)

Integer partitions

 $p(E) \sim \frac{1}{4E\sqrt{3}} \exp\left(\pi\sqrt{\frac{2E}{3}}\right)$

Low point amplitudes, Positivity bounds, S-matrix theory/Bootstrap

Asymptotic analytic understanding of density of states of the theory

p(E)

Integer partitions

For the standard model, TM, Pal 2010.08560 $p(\Delta) \sim \frac{50674491 \ 3^{5/8} \left(\frac{31}{5}\right)^{3/8} 7^{7/8} \pi^{10}}{131072000 \sqrt[4]{2}\sqrt{13}\Delta^{55/8}} \exp\left(\frac{2}{3}\sqrt{2} \sqrt[4]{\frac{217}{15}} \pi \Delta^{3/4} - \frac{37 \sqrt[4]{\frac{15}{217}} \pi}{4\sqrt{2}} \Delta^{1/4} + 28\zeta'(-2)\right)$

Low point amplitudes, Positivity bounds, S-matrix theory/Bootstrap

 $\lambda \sim \beta^{\#}$ Asymptotic analytic understanding of density of states of the theory $\lambda \sim \beta \#$ p(E)Integer partitions Also for weakly coupled theories, Cao, TM, Pal 2111.07472

Bootstrap approach?

symmetries

Understanding of strongly coupled theories from a bootstrap approach, recently been applied to QFT, i.e. to the S-matrix

Recent: M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, '16, '17. More recently e.g. L. Cordova and P. Vieira, '18; D. Mazac and M. Paulos '18,'19; Cordova, He, Kruczenski, Vieira, '19; Karateev, Kuhn, Penedones '19; Correia, Sever, Zhiboedov, '20; Homrich, Penedones, Toledo, van Rees, Vieira, '20 ...

Those are 2 to 2. This is 2 to N>>1

Low point amplitudes, Positivity bounds, S-matrix theory/Bootstrap

pp or AA to N hadrons has some S-matrix element, that has to obey certain

Addendum: manipulating flat phase space in the Large N limit

Pseudorapidity

$$\int d\Pi_N = (2\pi)^{4-3N} Q^{2N-4} \frac{2\pi^{N-1}}{(N-1)!(N-1)!(N-1)!}$$

0

Lorentz invariant phase space is a Stiefel Manifold

Henning, TM arxiv:1902.06747 N

 $\delta^{(4)}(p_a + p_b - p_1 - \dots - p_N) \int \delta(p_i^2 - m_i^2)$

Sphere $\frac{O(N)}{O(N-1)}$ Stiefel

(& then Complexified, O -> U)

i=1 Momentum conservation

On-shell