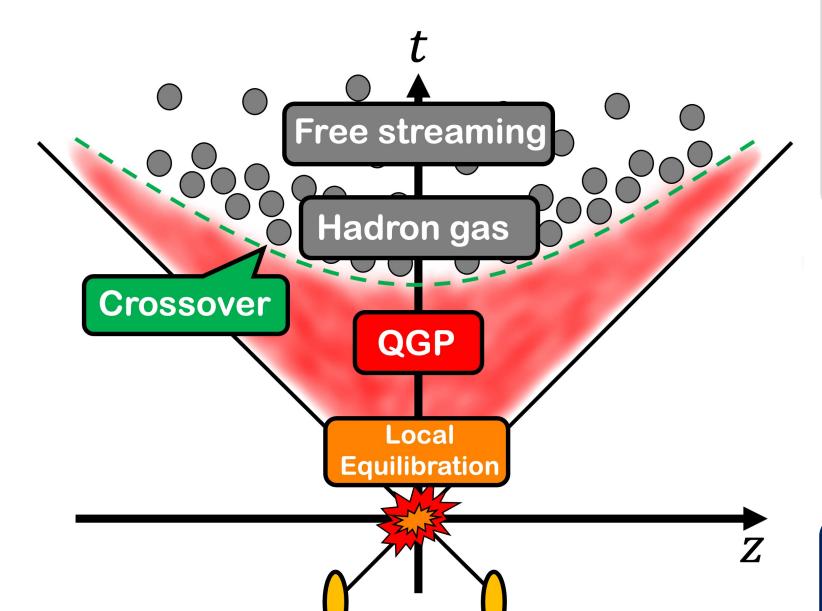
Dynamics of causal hydrodynamic fluctuations in an expanding system SOPHIA HADRON

Shin-ei Fujii, Tetsufumi Hirano (Sophia Univ.)

1. Introduction



PHYSICS

GROUP

https://www.bnl.gov/newsroom/news.php?a=110303 Press release **Discovery of QGP's** perfect fluid behavior 2005/04/18

Description of space-time evolution by "Relativistic hydrodynamics" Hot Topic

Study of transport properties

Fluctuation Dissipation Relation (FDR)

- Dissipation (viscosity) and fluctuations are always accompanied.
- Thermal equilibrium state is stable due to the balance between them.

ex.) Bulk pressure

 $\langle \xi_{\Pi}(x)\xi_{\Pi}(x')\rangle = 2T\zeta\delta^{(4)}(x-x')$

 ξ_{Π} : fluctuation ζ : viscosity

Evolution of relativistic hydrodynamic model + FDR

+ Finite viscosity

s-fujii-8c2@eagle.sophia.ac.jp hirano@sophia.ac.jp

Entropy

Fluctuation

New lodic

Research on QGP

Dissipation

State

of QGP using relativistic dissipative hydrodynamics

П: bulk pressure

· THILL VISCOSILY			
Ideal hydro	Dissipative hydro	Fluctuating hydro	properties using
around 2000	around 2010	around 2015	fluctuations

2. Formalisms

Perturbative expansion around the Bjorken's solution

Bjorken's solution J. D. Bjorken, Phys. Rev. D 27, 140-151 (1983)

 $u_{\text{Bi}}^{\mu} = (\cosh \eta_s, 0, 0, \sinh \eta_s)$ $\eta_s = \frac{1}{2} \ln \left(\frac{t+z}{t-z} \right)$: coordinate rapidity

Small deviations

$$u^{\mu} \rightarrow \left(\cosh(\eta_{s} + \delta y(\tau, \eta_{s})), 0, 0, \sinh(\eta_{s} + \delta y(\tau, \eta_{s})) \right)$$

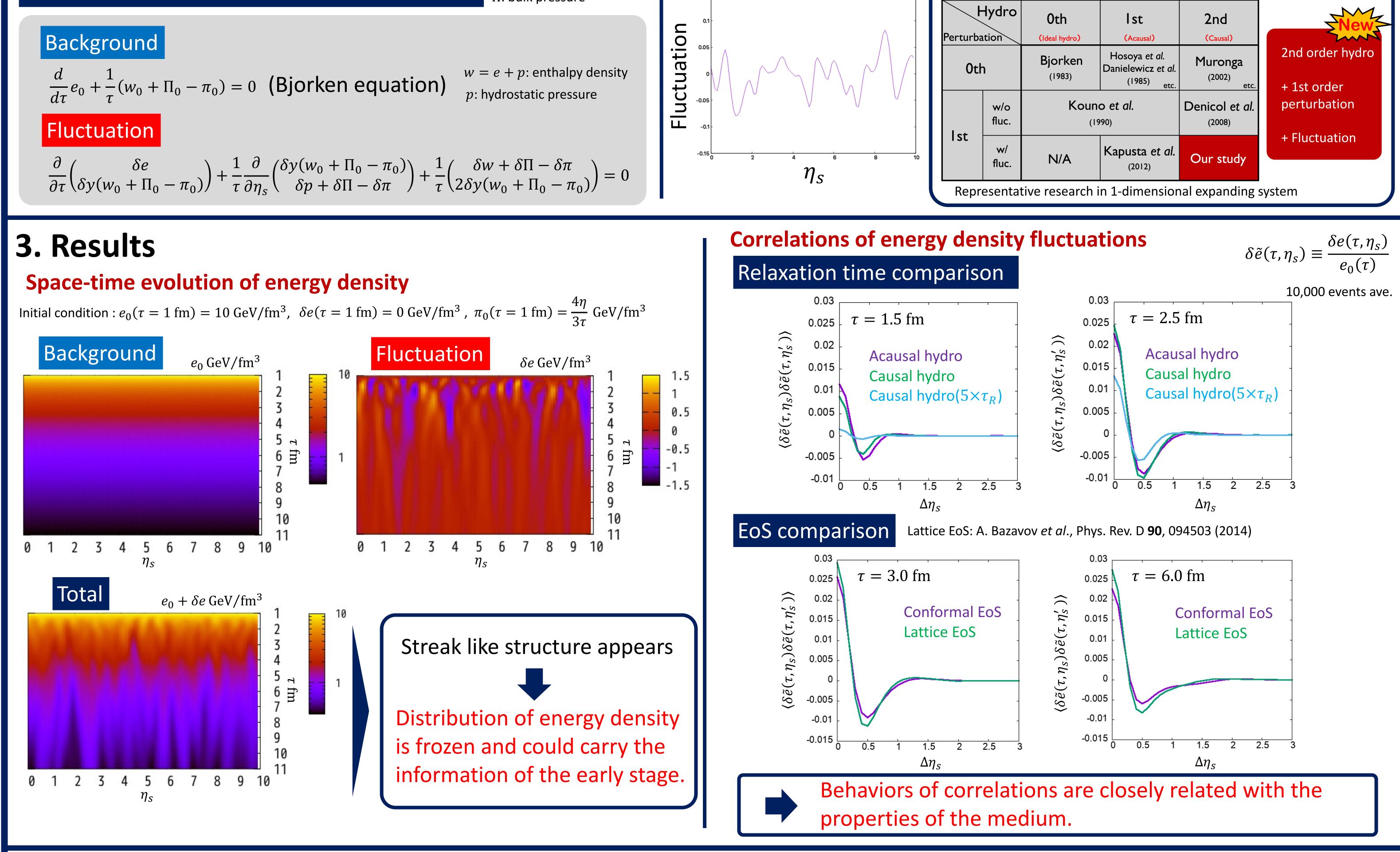
$$e \rightarrow e_{0}(\tau) + \delta e(\tau, \eta_{s}) \text{ etc. } e: \text{ energy density, } \tau = \sqrt{t^{2} - z^{2}}: \text{ proper time}$$

Energy-momentum conservation

Balance equation for Background (Oth order perturbation) Balance equation for Fluctuation (1st order perturbation)

for arbitrary constitutive equations for π and Π

Causal constitutive equations $D \equiv u^{\mu} \partial_{\mu}$ Israel-Stewart equation + noise $(1 + \tau_{\pi}D)\pi = \frac{4\eta}{2}\theta + \xi_{\pi}$ $\theta \equiv \partial_{\mu} u^{\mu}$ τ_{π} : relaxation time Perturbative expansion $\pi = \pi_0(\tau) + \delta \pi(\tau, \eta_s)$ etc. ξ_{π} : noise Background Fluctuation $\left(1+\tau_{\pi 0}\frac{d}{d\tau}\right)\pi_{0} = \frac{4\eta_{0}}{3\tau} \qquad \left(1+\tau_{\pi 0}\frac{\partial}{\partial\tau}\right)\delta\pi = -\frac{\delta\tau_{\pi}}{\tau_{-0}}\left(\frac{4\eta_{0}}{3\tau}-\pi_{0}\right) + \frac{4\eta_{0}}{3\tau}\frac{\partial}{\partial\eta_{0}}\delta y + \frac{4\delta\eta}{3\tau} + \xi_{\pi}$ **Fluctuations** η_0 : shear viscosity (background) FDR for shear stress T_0 : temperature (background) $\Delta x = \Delta y = 1 \text{ fm}, \langle \xi_{\pi}(\tau, \eta_s) \rangle = 0, \ \sigma_{\eta} = 0.5$ $\langle \xi_{\pi}(\tau,\eta_{s})\xi_{\pi}(\tau',\eta_{s}')\rangle = \frac{8\eta_{0}T_{0}}{3\tau\Lambda x\Lambda y}G(\eta_{s}-\eta_{s}')\delta(\tau-\tau')$ $G(\eta_s - \eta_s') = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp\left(-\frac{(\eta_s - \eta_s')^2}{2\sigma_\eta^2}\right)$ $\pi \equiv \pi^{00} - \pi^{33}$: shear stress **Position**



4. Summary

We developed a framework which deals with causal hydrodynamic fluctuations in 1-dimensional expanding system.

• We observed streak like structure through time evolution of energy density caused by a freeze of distribution.

• We found behaviors of correlations are closely related with the properties of the medium.

