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Motivations

•Relativistic hydrodynamics can well reproduce heavy-ion collisions results such as flow.

•Relativistic hydrodynamics in this context is currently only solved with explicit methods.

• Implicit time integrators have interesting stability properties that could contribute to vis-
cous and fluctuating hydrodynamics.

• Implicit numerical solver are expected to be slow in general, however we show that they
can actually be more computationally efficient.

Ideal hydrodynamic equations

We have implemented a new method to implicitly solve the 1+1 and 1+2 dimensional ideal
hydrodynamic equations. The latter correspond to the conservation of the energy–momentum
tensor T µν,

∂tT
tν = −∂xT

xν − ∂yT
yν , (ν = t, x, y, z).

with
T µν = ϵuµuν + P∆µν ,

Space and time discretization

We use the Kurganov-Tadmor method to discretize the hydrodynamic equations as

∂ty⃗ = h⃗KT(t, y⃗)

• y⃗ : vector of cells of size ∆x containing the values of T µν

• h⃗KT : discretized fluxes in all cells

The time is discretize in time interval ∆t with the multi-stages Runge-Kutta method,

y⃗(n+1) = y⃗(n) +∆t

S∑
i

bik⃗i,

k⃗i = f⃗i(k⃗) = h⃗(t(n) + ci∆t, y⃗(n) +

S∑
j

aijk⃗j).

We use the following coefficients to compare explicit and explicit:

Explicit Implicit

ci aij
bj

0 0 0
1 1 0
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Fixed-point method

We use the simple fixed-point method

k⃗
{s+1}
i = f⃗i

(
k⃗{s}

)
until

∥k⃗{s+1}i − f⃗i
(
k⃗{s}

)
∥ ≪ 1,

where the initial guess k⃗
{0}
i is chosen to be the converged solution

from the last Runge-Kutta time step. For the initial time t = 0
only, k⃗

{0}
i = 0⃗.

Local optimization

Due to the locality of the space discretiza-
tion, cells that have already converged are
not computed anymore unless some of its
surrounding cells are not converged.

Computational-cost

nKT =
NKT

Ncell

•NKT : number of computation of h⃗KT

•Ncell : total number of cells

Quantities

• ϵnum : numerical result

• ϵexact : exact solution
• ϵref : vanishing ∆t numerical reference

•∆exact = D
(
ϵnum, ϵexact

)
•∆ref = D

(
ϵnum, ϵref

)
D(e1, e2) =

e1 − e2
max(|e1|, |e2|)

.

Summary

•We implemented an implicit method to numerically solve ideal relativistic hydrodynamics

•We use the Kurganov-Tadmor for space scheme and fixed-point solver with a local opti-
mization.

• Implicit method is more efficient than explicit

1+1d results for the Riemann problem
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Number of iterations required for the fixed-point solver at each space-time point for the
Riemann problem. The dash-dotted and dashed lines show the positions of rarefaction
(x = −cst) and shock (x = t), respectively.
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Energy density ϵ (upper panel) and its
error compared with the exact solution
∆exact (lower panel) for the Riemann prob-
lem at t = 7.5 fm with ∆t/∆x = 0.1 ×
2−6 fm.

Maximum and average of the numerical er-
ror |∆ref| as a functions of the computational
cost nKT for the Riemann problem. The
large points show the results at ∆t = 0.1∆x.

2+1d results for TRENTo heavy-ions initial

condition
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Numerical results of energy density ϵ (upper panel) and number of iterations of the fixed-point
numerical solver in each cells (bottom panel) for ∆t = 0.1∆x × 2−6 fm and ∆x = 0.2 fm.
The collision considered is a lead-lead collisions with impact parameter b = 7 fm, collision
energy

√
sNN = 2.76 TeV.

nKT

10 5

10 3

10 1

|∆
re

f|

∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm∆x= 0.2 fm

max
mean
Explicit
Implicit

102 103 104

nKT

10 5

10 3

10 1

|∆
re

f|

∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm∆x= 0.1 fm

Maximum and average of the numerical
error |∆ref| as a functions of the compu-
tational cost nKT for 10 TRENTo events.
The large points show the results at ∆t =
0.1∆x.


