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e Relativistic hydrodynamics can well reproduce heavy-ion collisions results such as flow.

e Relativistic hydrodynamics in this context is currently only solved with explicit methods.

e Implicit time integrators have interesting stability properties that could contribute to vis-
cous and fluctuating hydrodynamics.

e Implicit numerical solver are expected to be slow in general, however we show that they
can actually be more computationally eflicient.
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Ideal hydrodynamic equations

We have implemented a new method to implicitly solve the 141 and 142 dimensional ideal

hydrodynamic equations. The latter correspond to the conservation of the energy-momentum z (fm)
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Fixed-point method

We use the simple fixed-point method
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e Nir : number of computation of hxr

e N : total number of cells

Maximum and average of the numerical
error |A| as a functions of the compu-
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The large points show the results at At =
0.1Ax.

e We implemented an implicit method to numerically solve ideal relativistic hydrodynamics

e We use the Kurganov-Tadmor for space scheme and fixed-point solver with a local opti- s N
mization.

e Implicit method is more efficient than explicit nKT




