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Outline

e Motivation: chiral transports in magnetized plasma

e Chiral kinetic theory from Landau level basis

e Two-point functions as functional derivatives

e Summary and outlook



Anomalous chiral transports in QGP Kharzeev, Son, Landsteiner, vee, Neiman,

Yamamoto,Stephanov, Yin, Huang, Liao ...

Chiral magnetic/separation effect
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CKT with free particle basis
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O( 2): particle no longer on-shell, simple picture lost
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Gao, Liang, Q. Wang, X.N. Wang, PRD 2018

Two-point functions from CKT in magnetized plasma 4



CKT with Landau level basis ShuLin, LXY, PRD 2020
Gao, Lin, Mo, PRD 2020

Shu Lin, LXY, JHEP 2021
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Perturbation: vector/axial gauge field

Chiral Kinetic Equations in collisionless limit
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Perturbative solution: CMW

At () give CMW
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Suggestive form in static limit, LLL, on-shell
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Constitutive relation of currents
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No Ohm current in collisionless limit




Response functions as functional derivatives

Response functions from generating functional I
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CKT solutions do not satisfy derivative symmetry?



CKT with consistent & covariant anomaly

Consistent & covariant anomaly
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CKT with covariant anomaly
Son, Yamamoto, PRL 2012, PRD 2013
Manuel, Torres-Rincon, PRD 2014
Gorbar, Miransky, Shovkovy, Sukhachov, PRL 2017
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Bardeen, Zumino, Nucl. Phys. B 1984
Landsteiner, Phys. Pol. B 2016

In contrast to consistent anomaly

Carignano, Manuel, Torres-Rincon, PRD 2018

Relation between consistent & covariant current
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Noncommutable limits

Derivative symmetry In static limit Shu Lin, LXY, JHEP 2021
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Two limits noncommutable, finite interactions needed Satow, Yee, PRD 2014



Onsager relations

Structures of response functions
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Correlators of consistent currents satisfy Onsager relations
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Summary

e CKT from Landau level basis gives covariant anomaly

e Response functions for general gauge field, agree with derivative symmetry
& Onsager relations for consistent currents

Outlook

e Finite interactions to get commutable long wavelength & static limit

e Mass effect: suppress axial current, damp axial charge, effective collisional
terms

Thanks for your attention!



Consistent & covariant anomaly

Consistent anomaly & covariant anomaly
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Consistent axial anomaly & covariant anomaly
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