Probing the hadronic phase with resonance production in pp, p-Pb and Pb-Pb collisions with ALICE at LHC

Jihye Song^a, Sonali Padhan^b for the ALICE Collaboration ^aPusan National University, ^bIndian Institute of Technology Bombay

PUSAN NATIONAL UNIV.

The 9th Asian Triangle Heavy-Ion Conference

ATHIC2023

April 24 - 27, 2023 JMS Aster Plaza, Hiroshima, Japan

Motivation

Probing the properties of hadronic phase

- Resonances have lifetimes compare to that of the Hadronic phase
 - allow the study of properties of the hadronic phase in terms of regeneration and re-scattering effects
 - estimate the duration between chemical and kinetic freeze-out

Regeneration: pseudo-elastic scattering of decay products

→ *Enhanced* yield

Re-scattering: resonance decay products undergo elastic scattering or

pseudo-elastic scattering through a different resonance state

- \rightarrow Not reconstructed through invariant mass
- → Reduced yield

$\rho(1.3) < K^{*\pm}(3.6) < K^{*0}(4.2) < \Sigma^{*\pm}(5.0-5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.2)$

Lifetime(fm/c)

Meson	quark content	Decay modes	B.R.	Baryon	quark content	Decay modes	B.R.
ρ (770) ⁰	(uū+dd) √2	π+π-	100	Σ(1385) +	uus	Λπ+	87
K*(892) ⁰	ds	K+π-	66.6	Σ(1385) ⁻	dds	Λπ-	87
K*(892)±	us	$K^0{}_s\pi^+$	33.3	Λ(1520)	uds	pK⁻	22.5
f ₀ (980), f ₂ (1270)	unknown	π+π-	46(84)	Ξ (1530) ⁰	uss	Ξ-π+	66.7
K* _{0,2} (1430) ⁰	ds	K+π-	93(49.4)	Ξ(1820) ^{∓,0}	dss (uss)	ΛK∓ (ΛK⁰ _s)	unknown
φ (1020)	ss	K+K-	48.9	Ω <mark>(2012)</mark> ∓	SSS	Ξ∓K ⁰ s	unknown

A Large Ion Collider Experiment: ALICE

Inner Tracking System (ITS)
 Trigger, tracking, vertex, PID (dE/dx)

a sull

8

VOC

VOA and VOC

- Trigger, centrality/multiplicity estimator

рт spectra: pp

• Results are compared with several model calculations

arXiv:2106.13113

рт spectra: pp

• Yields of both K^{*0} and ϕ mesons are higher at $\sqrt{s} = 5.02$ TeV compared to $\sqrt{s} = 2.76$ TeV

рт spectra: Pb-Pb

• Hardening of particle spectra from peripheral to central collisions

рт spectra: Pb-Pb

 Ratio of p_T spectra increase with p_T and tend to saturate at high p_T for both mesons in central and semi-central collisions

p_T spectra: model comparison

 K^{*0} yields is suppressed at low p_T with respect to that blast-wave model prediction

p_T spectra: model comparison

 K^{*0} yields is suppressed at low p_T with respect to that blast-wave model prediction

p_T integrated yields

- *p*_T-integrated yields of K^{*0} and φ scaled by average charged particle multiplicity measured at mid-rapidity as a function of multiplicity for pp and Pb-Pb collisions are presented
- Dependence of the normalized dN/dy is similar regardless of the beam energy

Mean transverse momentum

- $\langle p_T \rangle$ of K^{*0} and ϕ as a function of multiplicity for pp and Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, $\sqrt{s_{NN}} = 2.76$ TeV and Au-Au and pp collisions at $\sqrt{s_{NN}} = 200$ GeV are shown
- There is energy dependence between RHIC and LHC energies

Particle yield ratios

- Suppression of K*0/K in central heavy-ion collisions w.r.t. peripheral Pb—Pb, p—Pb and pp collisions
 - suggests K^{*0} **re-scattering** is dominant over **regeneration**
- Suppression in small systems at high multiplicity
 - hadronic phase also in small systems?
- No suppression of φ/K
 due to larger φ lifetime

Lifetime(fm/*c*): $\rho(1.3) < \mathbf{K}^{*0}(4.2) < \Sigma^{*}(5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.2)$

18

Resonance to long-lived particle ratios

- suppression of the ratios of short-lived resonances in central Pb-Pb collisions

 indicates <u>dominance of re-</u> scattering over regeneration
- no significant centrality dependence for long-lived resonances e.g. Ξ^*, ϕ
- no energy dependence from RHIC to LHC
- smooth trend: $pp \rightarrow pA \rightarrow AA$

-----ALI

Probing the hadronic phase

 $[K^{*0}/K]_{kinetic(Pb-Pb)} = [K^{*0}/K]_{chemical(pp)} \times e^{-\tau/\tau} k^{*0}$

- Estimate the time duration between chemical and kinetic freeze-out from the measurement of K*0/K ratios in Pb-Pb and pp collisions
 - lifetime of hadronic phase smoothly increases with multiplicity
 - found to be ~4-7 fm/c for central collisions

PLB 802 (2020) 135225

Probing the hadronic phase

- Summary of estimation of the lower limit of hadronic phase for $\rho^{0/\pi}$, K^{*0/}K, K^{*±}/K, and Λ^{*}/Λ
- Estimated time duration measured in √s_{NN}=5.02 TeV energy seems larger than those from √s_{NN}=2.76 TeV
 - But within the systematic error
- Need theory input to have better understanding

Conclusion

- Hadronic resonances are valuable probes to study the properties of hadronic phase
- *p*_T-spectra of K*⁰ and φ are presented in pp and Pb-Pb collisions at 5.02 TeV and compared with the spectra obtained at 2.76 TeV
- p_T spectra are compared with model
- p_T -integrated yields and $\langle p_T \rangle$ of the mesons are presented
- Suppression of short-lived resonances in large collision systems
 - dominance of re-scattering over regeneration
 - no suppression observed for the longer-lived resonances
- time duration between chemical and kinetic freeze-out is estimated with resonances

Backup

Invariant mass distribution: K^{*0} and ϕ

 $K^{*0} \rightarrow K^{\mp} \pi^{\pm}$

Mean transverse momentum

Particle yield ratios

