Global and local polarization of A hyperons across RHIC-BES energies

Xiang-Yu Wu

Based on Phys.Rev.C 105 (2022) 6,064909

ATHIC 2023, Hiroshima, Japan

In collaboration with Cong Yi, Guang-You Qin, Shi Pu

Outline

- Introduction
- (3 + 1)-D CLVisc hydrodynamics framework
 - AMPT and SMASH initial condition+hydro evolution + spin polarization
- Numerical results
 - Global and local polarization with spin hall effect (SHE), initial condition and baryon diffusion dependence
- Summary

Global polarization Ζ Χ reaction plane

Large angular momentum $L \sim 10^5 - 10^7 \hbar$

Strong magnetic filed B ~ $10^{13} - 10^{14}\ T$

Global polarization

Using screened potential model to calculate the global quark polarization: [Liang, Wang, Phys. Rev. Lett. 94 (2005) 102301]

$$P_q = -\frac{\pi\mu p}{4E\left(E + m_q\right)}$$

Λ and $\overline{Λ}$ hyperons are "self-analysing" $Λ → p + π^$ the proton tends to be emitted along the spin direction of the parent Λ

 $\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^{*}} = \frac{1}{2} \left(1 + \alpha_{\mathrm{H}} \left| \mathscr{P}_{\mathrm{H}} \right| \cos\theta^{*} \right) \xrightarrow{\mathbf{p}_{\rho}^{*}} \underbrace{\mathbf{\theta}_{\rho}^{*}}_{\Lambda}$ $\frac{\theta^{*}}{\theta^{*}}: \text{ the angle between proton momentum}$ and Λ polarization vector \mathscr{P}_{H} $\alpha_{\mathrm{H}}: \text{ the decay parameter}$

The fastest-rotating fluid so far!!!

4

Local polarization Induced by angular momentum

Induced by inhomogeneous expansion

[Wu, Pang, Huang, and Wang, Phys. Rev. Research. 1, 033058 (2019)] [Fu, Xu, Huang, and Song, Phys. Rev. C 103, 024903 (2021)] [Xia, Li, Tang, and Wang, Phys. Rev. C 98, 024905 (2018) [Becattini and Karpenko, Phys. Rev. Lett. 120, 012302 (2018)] [Alzhrani, Ryu and Shen, Phys. Rev. C 106, 014905 (2022)]

Initial condition

AMPT initial condition (Patron level)

- HIJING model : initial patrons via hard semi-hard scattering and excited strings
- ZPC model : the space-time evolution via elastic scattering

SMASH initial condition (Hadron level)

- Effective solutions of $p^{\mu}\partial_{\mu}f + mF^{\mu}\partial_{p_{\mu}}(f) = C[f]$
- f(t, x, p) denotes one-particle distribution function
- C[f] includes elastic collisions, resonance formation and decays, string fragmentation
- mesons and baryons up to mass ≈ 2.35 GeV.

[Lin, Ko, Li, Zhang and Pal, Phys. Rev. C72, 064901 (2005)] [J. Weil et al., Phys. Rev. C 94, 054905 (2016), arXiv:1606.06642]

Initial condition

can be constructed at Melin coordinate via the local space-time information of patrons and hadrons,

$$T^{\mu\nu}(\tau_0, x, y, \eta_s) = K \sum_{i} \frac{p_i^{\mu} p_i^{\nu}}{p_i^{\tau}} G(\tau_0, x, y, \eta_s)$$

where $G(\tau_0, x, y, \eta_s)$ denotes the Gaussian smearing

$$G\left(\tau_{0}, x, y, \eta_{s}\right) = \frac{1}{\mathcal{N}} \exp\left[-\frac{\left(x - x_{i}\right)^{2} + \left(y - y_{i}\right)^{2}}{2\sigma_{r}^{2}} - \frac{\left(\eta_{s} - \eta_{si}\right)^{2}}{2\sigma_{\eta_{s}}^{2}}\right]$$

 p^{μ} : the four-momentum of hadrons or patrons.

Q: the baryon charge for particles.

 \mathcal{N} : the normalization factor to keep the net baryon number conservation.

 $K, \sigma_r, \sigma_{\eta_s}$: free parameters to fit final charged hadrons yield.

At the initial proper time au_0 , the initial energy momentum tensor $T^{\mu
u}$ and the initial baryon current J^{μ}

$$J^{\mu}\left(\tau_{0}, x, y, \eta_{s}\right) = \sum_{i} Q_{i} \frac{p_{i}^{\mu}}{p_{i}^{\tau}} G\left(\tau_{0}, x, y, \eta_{s}\right)$$

Hydrodynamics evolution

Energy-momentum conservation and net baryon current conservation:

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = eU^{\mu}U^{\nu}$$
$$\nabla_{\mu}J^{\mu} = 0 \qquad J^{\mu} = nU^{\mu} + V^{\mu}$$

Equation of motion of dissipative current:

$$\Delta^{\mu\nu}_{\alpha\beta}D\pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}}\left(\pi^{\mu\nu} - \eta\sigma^{\mu\nu}\right) - \frac{4}{3}\pi^{\mu\nu}\theta$$

$$\Delta^{\mu\nu}DV_{\mu} = -\frac{1}{\tau_V}\left(V^{\mu} - \kappa_B \nabla^{\mu}\frac{\mu}{T}\right) - V^{\mu}\theta$$

The shear viscosity

 $\eta = C_{\eta} \frac{e+p}{T}$ $\kappa_B = \frac{C_B}{T} n \left(\frac{1}{3} \cot\left(\frac{\mu_B}{T}\right)\right)$

The baryon diffusion

[Wu, Qin, Pang and Wang, Phys. Rev. C 105, 034909 (2022)]

 $-P\Delta^{\mu
u}+\pi^{\mu
u}$

μ

$$\left(\frac{B}{T}\right) - \frac{nT}{e+P}$$

Equation of state

[Monnai, Schenke and Shen, Phys. Rev. C 100, 024907 (2019)]

High T: lattice QCD

$$\frac{P}{T^4} = \frac{P_0}{T^4} + \sum_{l,m,n} \frac{\chi_{l,m,n}^{B,Q,S}}{l!m!n!} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^m \left(\frac{\mu_S}{T}\right)$$

n

9

 $\chi^{B,Q,S}_{l,m,n}$ is the (l+m+n)-th order susceptibility.

Low T: hadron gas model

$$P = \pm T \sum_{i} \int \frac{g_i d^3 p}{(2\pi)^3} \ln \left[1 \pm e^{-(E_i - \mu_i)/T} \right]$$
$$= \sum_{i} \sum_{k} (\mp 1)^{k+1} \frac{1}{k^2} \frac{g_i}{2\pi^2} m_i^2 T^2 e^{k\mu_i/T} K_2 \left(\frac{km_i}{T} \right)^{k+1}$$

Here *i*: particle species, g_i : degeneracy, m_i : particle's mass, $K_2(x)$: the modified Bessel function of the second kind.

The complete nuclear equation of state:

$$\frac{P}{T^4} = \frac{1}{2} \left[1 - f\left(T, \mu_B, \mu_Q, \mu_S\right) \right] \frac{P_{\text{had}}\left(T, \mu_B, \mu_Q, \mu_S\right)}{T^4} + \frac{1}{2} \left[1 + f\left(T, \mu_B, \mu_Q, \mu_S\right) \right] \frac{P_{\text{lat}}\left(T, \mu_B, \mu_Q, \mu_S\right)}{T^4}$$

The connecting function $f \to 1 \text{ at high T}, \ f \to -1 \text{ at low T}$

Spin polarization

The modified Cooper-Frye formula for the polarization pseudo vector for spin- $\frac{1}{2}$ particles

$$\mathcal{S}^{\mu}(\mathbf{p}) = -\frac{1}{2}$$

where \mathcal{J}_5 and \mathcal{N} are axial-charge current density and the number density of fermions.

For massless fermions, S(p) can be decomposed into different sources based on QKT

$$\mathcal{S}^{\mu}(\mathbf{p}) = \mathcal{S}^{\mu}_{\text{thermal}} \stackrel{(\mathbf{p})}{=} + \mathcal{S}^{\mu}_{\text{shear}} \stackrel{(\mathbf{p})}{=} + \mathcal{S}^{\mu}_{\text{accT}} \stackrel{(\mathbf{p})}{=} + \mathcal{S}^{\mu}_{\text{chemical}} \stackrel{(\mathbf{p})}{=} + \mathcal{S}^{\mu}_{\text{EB}} \stackrel{(\mathbf{p})}{$$

[Karpenko, F. Becattini, Eur. Phys. J. C 77 (2017) 213] [Fang, Pang, Wang, Wang, Phys. Rev. C94, 024904 (2016)] [Hidaka, Pu and Yang, Phys. Rev. D97, 016004 (2018)]

 $\frac{\int d\Sigma p \mathcal{J}_5^{\mu}(p,X)}{2m \left[d\Sigma \mathcal{N}(p,X) \right]}$

Spin polarization

In the experiment, the polarization of Λ and $\bar{\Lambda}$ are measured in their own rest frames. Therefore, we express the polarization psudovector $\vec{P}^*(\mathbf{p})$ in the rest frame by taking the Lorenz transformation,

$$\vec{P}^*(\mathbf{p}) = \vec{P}(\mathbf{p}) - \frac{\vec{P}(\mathbf{p}) \cdot \vec{p}}{p^0 \left(p^0 + m\right)} \vec{p}$$

Finally, the local polarization is given by the averaging over momentum and rapidity.

$$\left\langle \overrightarrow{P}\left(\phi_{p}\right)\right\rangle = \frac{\int_{y_{\min}}^{y_{\max}} dy \int_{p_{T}\min}^{p_{T}\max} p_{T} dp_{T} \left[\Phi(\mathbf{p}) \overrightarrow{P}^{*}(\mathbf{p})\right]}{\int_{y_{\min}}^{y_{\max}} dy \int_{p_{T}\max}^{p_{T}\max} p_{T} dp_{T} \Phi(\mathbf{p})}$$

where
$$P^{\mu}(\mathbf{p}) \equiv \frac{1}{s} \mathscr{S}^{\mu}(\mathbf{p})$$

Global polarization

[H. Li, et al, PRC 96 (2017) 054908] [Karpenko and Becattini, EPJC 77 (2017) 4, 213]

 P_{v} increases when the collision energies decreases.

- the angular momentum scaled by total energy of fireball should decrease as the collisional energy increases.

- the time of evolution decreases.

At the low-energy collision, the polarization from the SMASH initial condition is much larger than AMPT initial condition.

- the effect of finite nuclear thickness

The splitting between Λ and Λ can be neglected.

- the competitions between finite baryon density and the production time.

Local longitudinal polarization : different sources

The polarization induced by the SHE P_{chem}^{z} and SIP P_{shear}^{z} provide the sine contribution to longitudinal polarization $P_{_{7}}$.

The polarization from thermal vorticity P_{th}^z and fluid acceleration P_{accT}^z give the opposite contribution.

Total local longitudinal polarization: AMPT vs SMASH

At $\sqrt{s_{NN}} = 27$, 62.4GeV, both AMPT and SMASH initial condition give the similar total local P^z . from the SMASH initial conditions: opposite sign due to the contribution from P_{chem}^{z} .

At $\sqrt{s_{NN}} = 7.7 \text{GeV}$, the total local P^z from the AMPT initial conditions is significant different with the one

Total local longitudinal polarization: Λ vs $\bar{\Lambda}$

The longitudinal polarization for $\overline{\Lambda}$ has a larger magnitude than the one for Λ hyperons, especially 7.7 GeV. The difference between Λ and $\overline{\Lambda}$ become smaller at the high collision energy. It opens a window to probe the initial structure of QGP at the baryon-rich region through the local polarization of Λ and $\overline{\Lambda}$.

Local transverse polarization: different sources

The slope of P_{chem}^{y} seems to be opposite to that of P_{shear}^{y} in AMPT initial condition.

The contribution from P_{th}^{y} dominates over other sources for both the AMPT and the SMASH initial conditions. The SMASH initial condition has a larger magnitude than the AMPT initial model, especially at 7.7 GeV.

Total local transverse polarization: AMPT vs SMASH

The magnitude of P^{y} increases with decreasing collision energies for both initial conditions. P^{y} from the SMASH initial condition is larger than the one from the AMPT initial condition. The polarization is smaller at the in-plane direction than at the out-of-plane direction. (maybe sign puzzle at low energy?)

Total local transverse polarization: AMPT vs SMASH

The magnitude of P^{y} increases with decreasing collision energies for both initial conditions. P^{y} from the SMASH initial condition is larger than the one from the AMPT initial condition. The polarization is smaller at the in-plane direction than at the out-of-plane direction. (maybe sign puzzle at low energy?)

Baryon diffusion dependence

and P_{accT}^z are insensitive to baryon diffusion C_B . $P_{\rm shear}^z$ $P_{\rm th}^z$ and $P_{\rm ch}^z$ are enhanced with baryon diffusion C_{R} increases. chem The enhancement of P_{chem}^{z} is prominent at low energy and in SMASH initial model.

The baryon diffusion

$$\kappa_B = \frac{C_B}{T} n \left(\frac{1}{3} \cot\left(\frac{\mu_B}{T}\right) - \frac{nT}{e+P} \right)$$

Local transverse polarization: baryon diffusion dependence

The baryon diffusion effect on P^{y} induced by different sources are negligible for AMPT and SMASH initial conditions.

The local transverse polarization of Λ is sensitive to initial conditions and a good observable to constrain the initial states of heavy ion collision.

Summary

- local polarization at RHIC-BES energies
- total polarization along beam direction with AMPT initial condition at 7.7 GeV.
- along beam direction with SMASH initial condition.
- sign when $C_B = 1.2$ in SMASH initial condition.
- The effects of baryon diffusion to P^{y} are negligible for both initial conditions.

• In this work, we discuss the effects of SHE, initial condition and baryon diffusion for global and

• The polarization induced by SHE $P_{\rm chem}^z$ gives a sizable contribution and even flip the sign of

• The polarization induced by SHE $P_{\rm chem}^z$ gives negligible contribution to the total polarization

• The P_{th}^z and P_{chem}^z are sensitive to the baryon diffusion and total polarization P^z can flip the

Backup

Spin polarization

$$\begin{split} \mathscr{S}_{\text{thermal}}^{\mu}(\mathbf{p}) &= \int d\Sigma^{\sigma} F_{\sigma} \varepsilon^{\mu\nu\alpha\beta} p_{\nu} \partial_{\alpha} \frac{u_{\beta}}{T} \\ \mathscr{S}_{\text{shear}}^{\mu}(\mathbf{p}) &= \int d\Sigma^{\sigma} F_{\sigma} \frac{\varepsilon^{\mu\nu\alpha\beta} p_{\nu} u_{\beta}}{(up)T} p^{\rho} \left(\partial_{\rho} u_{\alpha} + \partial_{\alpha} u_{\rho} - u_{\rho} D u_{\alpha} \right) \\ \mathscr{S}_{\text{accT}}^{\mu}(\mathbf{p}) &= -\int d\Sigma^{\sigma} F_{\sigma} \frac{\varepsilon^{\mu\nu\alpha\beta} p_{\nu} u_{\alpha}}{T} \left(D u_{\beta} - \frac{\partial_{\beta} T}{T} \right) \\ \mathscr{S}_{\text{chemical}}^{\mu}(\mathbf{p}) &= 2 \int d\Sigma^{\sigma} F_{\sigma} \frac{1}{(up)} \varepsilon^{\mu\nu\alpha\beta} p_{\alpha} u_{\beta} \partial_{\nu} \frac{\mu}{T} \\ \mathscr{S}_{\text{EB}}^{\mu}(\mathbf{p}) &= 2 \int d\Sigma^{\sigma} F_{\sigma} \left[\frac{\varepsilon^{\mu\nu\alpha\beta} p_{\alpha} u_{\beta} E_{\nu}}{(up)T} + \frac{B^{\mu}}{T} \right] \end{split}$$

Here,

$$F^{\mu} = \frac{\hbar}{8m_{\Lambda}\Phi(\mathbf{p})} p^{\mu}f_{\rm eq}\left(1 - f_{\rm eq}\right)$$

[Hidaka, Pu and Yang, Phys. Rev. D97, 016004 (2018)] [Yi, Pu, and Yang, Phys. Rev. C104.064901 (2021)]

Thermal vorticity

Fluid acceleration

Gradient of chemical potential (Spin Hall Effect)

Electromagnetic Fileds $(\mathsf{E} = \mathsf{B} = \mathsf{O})$

$$\Phi(\mathbf{p}) = \int d\Sigma^{\mu} p_{\mu} f_{\rm eq}$$

T

Parameters

$\sqrt{s_{NN}}$ (GeV)	AMPT model					SMASH model				
	K	τ_0 (fm)	σ_r (fm)	σ_{η_s}	C_{η_v}	K	τ_0 (fm)	σ_r (fm)	σ_{η_s}	C_{η_v}
7.7	1.4	2.0	1.0	0.7	0.2	1.0	3.2	1.0	0.35	0.2
27	1.8	1.0	1.0	0.5	0.12	1.0	1.0	1.0	0.35	0.12
62.4	1.7	0.7	0.6	0.55	0.08	1.0	0.7	1.0	0.55	0.08

SMASH initial conditions: (compared with AMPT initial condition)

are same order for both model, similar radial flow $P_{\rm chem}^{z}$ depends on initial conditions strongly.

Local longitudinal polarization: AMPT vs SMASH

 P_{accT}^{χ} , P_{chem}^{χ} is almost vanishing negligible and have a weak collision energies dependence

P^z shear P_{th}^z and P_{chem}^z are enhanced with baryon diffusion C_B increases. The enhancement of P_{chem}^{z} is prominent at low energy and in SMASH model

The baryon diffusion

Spin hall effect

From Qiang Hu's Poster@SQM2022

Sign puzzle again???

[Fu, Liu,,Pang, Song and Yin, arXiv:2201.12970] [S. Meyer et al., Nature Materials 16 (2017)] $P_{z,y}^{\mathsf{net}}(\phi) \equiv P_{z,y}(\phi) - \bar{P}_{z,y}(\phi)$ 1.5 (%) $\Lambda - \overline{\Lambda}$ <u>s</u> – s — with SHE with SHE. - --- - w/o SHE - --- - w/o SHE 5.0 ^{م r} ل $= \langle P_z^{\text{net}}(\phi) \sin 2\phi \rangle$ 0 -0.5 (a) (%) $\Lambda - \overline{\Lambda}$ s – s with SHE ---- with SHE 0.4 - --- - w/o SHE - --- - w/o SHE D.0 5, √ D.2 $-\left\langle P_{y}^{\mathsf{net}}\left(\phi\right)\cos 2\phi\right\rangle$ P_{2v}^{net} 0 -0.2 (b) 100

Global Polarization

Global Polarization

