Effect of event-by-event fluctuations on light-nuclei yield ratio

+ Non-trivial background (geometry + flow) effect

Koichi Murase^A, Shanjin Wu^{B,C}, Huichao Song^C YITP, Kyoto Univ.^A, Lanzhou Univ.^B, Peking Univ.^C

ATHIC 2023, 2023/4/26, Hiroshima JMS Aster Plaza

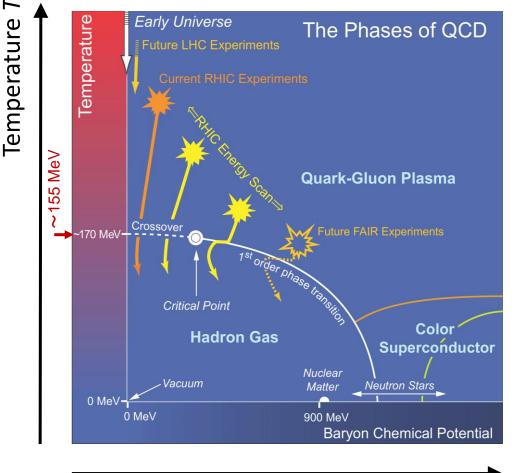
1

2023/4/26

Critical-point search in high-energy heavy-ion collisions

Schematic QCD phase diagram

From the 2007 NSAC Long Range Plan



High density region ($\mu_B > 0$)

Sign problem in the lattice QCD

Effective models \rightarrow Critical point (CP), 1st order phase transition?

Experiment: wide range of energies RHIC Beam Energy Scan (BES), FAIR, NICA, J-PARC-HI, HIAF, ...

How to reliably identify the signals of CP in data?

Baryon chemical potential μ_B

Non-monotonic behaviors as functions of Vs_{NN}

= Key to the search for critical point? ($Vs_{NN} \leftrightarrow \mu_B$... roughly corresponds)

Net-proton cumulant

- \sim Net-baryon cumulant
- ~ Susceptibilities $(\partial/\beta\partial\mu)^n \ln\Xi$

Stephanov, PRL **107**, 052301 (2011), Kitazawa, Asakawa, PRC **86**, 024904 (2012), STAR, PRL **126**, 092301 (2021)

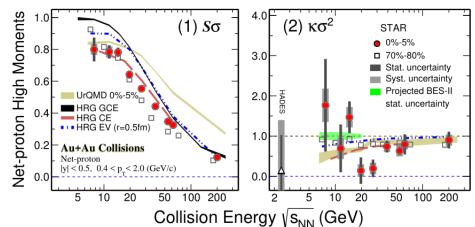
Light-nuclei yield ratio

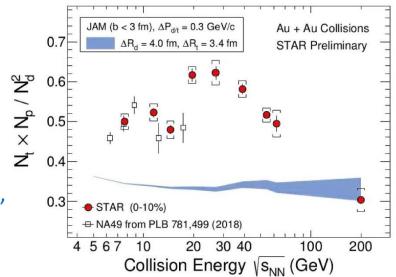
Coalescence model

Cancels volume effect, etc. in ratio

 $N_t N_p / N_d^2 \sim \int \langle n(\mathbf{x})n(0) \rangle / \langle n \rangle^2$

K-J Sun, L-W Chen, CM Ko, Z Xu, PLB **774**, 103 (2017), H. Liu et al, PLB **805**, 135452 (2020) [Recap. of NA49, STAR]





<u>Model for yields of light nuclei in this study</u>

Coalescence model (recombination model)

"Nucleus of mass number A is formed by A-nucleons close to one another"

Relationship to the CP search

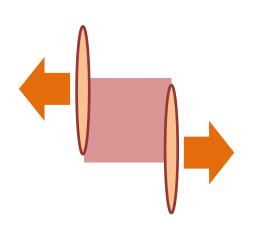
What is measured in experiments is event average $\langle N_d \rangle \sim \langle \int_{xy} N_{p,x} N_{n,y} \rangle, \langle N_t \rangle \sim \langle \int_{xyz} N_{p,x} N_{n,y} N_{n,z} \rangle$ Note: Hereafter, we denote them as N_A omitting angle brackets $\langle ... \rangle$

 $N_d / N_p N_n$ [aka $B_2(d)$] ... Contaminations including the non-trivial size effect

 $N_t N_p / N_d^2 \sim \int_x \langle n(x)n(0) \rangle / \langle n \rangle^2$... proportional to critical correlation K.-J. Sun, PLB **774**, 103 (2017), etc.

<u>Realistic collision setup ≠ uniform/equilibrium</u>

Various effects on the background *f*() in collision process



- Expansion \rightarrow coordinate-momentum correlation
- Initial event-by-event fluctuations
 - \rightarrow Non-critical long range correlations
- **Non-flow effects (jets, hadron rescattering and decays)** $\rightarrow f()$ may not be in equilibrium or a fn of (T, μ , u^{μ} , ...)
- Finite size and finite time (Kibble-Zurek) → Upper bound in critical correlation development

Q. How is $N_t N_p / N_d^2 \sim \int_x \langle n(x)n(0) \rangle / \langle n \rangle^2$ affected?

1. Non-trivial background distribution in a single event

 $f(\boldsymbol{r},\boldsymbol{p}) \equiv f_0(\boldsymbol{r},\boldsymbol{p}).$

Assumption 1: No (critical) fluctuations Assumption 2: isospin symmetry **2. Event-by-event fluctuations** $f^{(1)}(\boldsymbol{r}, \boldsymbol{p}), f^{(2)}(\boldsymbol{r}, \boldsymbol{p}), f^{(3)}(\boldsymbol{r}, \boldsymbol{p}), \dots$ $N_A^{(1)}, N_A^{(2)}, N_A^{(3)}, \dots \rightarrow \langle N_A^{(e)} \rangle$ Event average using **Toy model**

1. NON-TRIVIAL BACKGROUND DISTRIBUTION IN A SINGLE EVENT

S. WU, K. MURASE, S. TANG AND H. SONG, PHYS. REV. C 106 (2022), 034905.

Example: Simple Gaussian f()

K.-J. Sun et al, PLB792, 132

1. (input) Distribution function

$$f(\boldsymbol{r}, \boldsymbol{p}) = \frac{\rho_0}{(2\pi mT)^{3/2}} \exp\left(-\frac{\boldsymbol{r}^2}{2R_s^2}\right) \exp\left(-\frac{\boldsymbol{p}^2}{2mT}\right)$$

2. (result) Integrate the coalescence formula: $N_A \sim \int W_A \Pi^A f_i$

$$N_{d} = g_{d} N_{p}^{2} \left[\left(R_{s}^{2} + \frac{\sigma_{d}^{2}}{2} \right) \left(mT + \frac{1}{2\sigma_{d}^{2}} \right) \right]^{-\frac{3}{2}}$$
$$N_{t} = g_{t} N_{p}^{3} \left[\left(R_{s}^{2} + \frac{\sigma_{t}^{2}}{2} \right) \left(mT + \frac{1}{2\sigma_{t}^{2}} \right) \right]^{-3}$$

Note: light-nuclei sizes σ_d =2.26, σ_t =1.59 fm

If the size difference is <u>negligible</u>:

$$N_t N_p / N_d^2 = g_t / g_d^2 = 4/9$$

The effects from Gaussian profile exactly cancels!

 \rightarrow Investigate effect of general f() with non-Gaussian components

Idea for *non-Gaussian effect*: Expand *f*() in terms of *cumulants*

$$\frac{f(\boldsymbol{z}_i)}{N_p} = \rho(\boldsymbol{z}_i) = \int \frac{d^6 \boldsymbol{t}_i}{(2\pi)^6} e^{-\mathrm{i}\boldsymbol{t}_i \cdot \boldsymbol{z}_i} \exp\left[\sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^6} \frac{\mathcal{C}_{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} (\mathrm{i}\boldsymbol{t}_i)^{\boldsymbol{\alpha}}\right]$$

Expand in "phase-space cumulants" C_{α} [$z \sim (r, p)$] Cumulants up to 2nd order \rightarrow generate Gaussian distribution Higher order cumulants \rightarrow the deviation from the Gaussian?

Result for the yield
$$N_A$$
 for general A
Lowest order (2nd $N_A^{(0)} \equiv g_A N_p^A 8^{A-1} [\det(\mathcal{C}_2 + \mathcal{I}_6)]^{-(A-1)/2}$
order cumulants) independent of A

Higher order may be taken into account by the perturbations

$$\begin{split} H_{A} &\equiv \frac{N_{A}}{N_{A}^{(0)}} = 1 + \int \left\{ \prod_{i=1}^{A-1} \frac{d^{6} T_{i} \exp[-\frac{1}{2} T_{i} (\mathcal{C}_{2} + \mathcal{I}_{6}) T_{i}]}{\sqrt{(2\pi)^{6} \det(\mathcal{C}_{2} + \mathcal{I}_{6})^{-1}}} \right\} \quad \mathcal{H}(\{T_{i}\}_{i=1}^{A-1}) \equiv \sum_{k=3}^{\infty} \mathcal{H}_{k}(\{T_{i}\}_{i=1}^{A-1}) \\ &\times \sum_{m=1}^{\infty} \frac{[\mathcal{H}(\{T_{i}\}_{i=1}^{A-1})]^{m}}{m!} \\ &\equiv \sum_{k=3}^{\infty} \sum_{i=1}^{A} \sum_{|\alpha|=k} \frac{\mathcal{C}_{\alpha}}{\alpha!} [i(O^{T}T)_{i}]^{\alpha} \Big|_{T_{A}=0} \\ &= 1 + \mathcal{O}(\{\mathcal{C}_{\alpha}\}_{|\alpha|\geq 3}), \end{split}$$

2023/4/26

Generalized yield ratio

Generalization of $N_t N_p / N_d^2$

$$\begin{aligned} R_{A_1,...,A_{n_k}}^{p_1,...,p_{n_k}} &\equiv N_p^{-\sum_{k=1}^{n_k} p_k} \prod_{k=1}^{n_k} N_{A_k}^{p_k} \\ &= \left(\prod_{k=1}^{n_k} g_{A_k}^{p_k}\right) [1 + \mathcal{O}(\{\mathcal{C}_{\alpha}\}_{|\alpha| \ge 3})] \end{aligned}$$

subject to

$$\sum_{k=1}^{n_k} p_k(A_k - 1) = 0$$

+ (additional constraints without isospin sym)

E.g. $n_k = 2$ (two nuclei)

$$R_{A,B}^{1-B,A-1} = \frac{N_p^{B-A} N_B^{A-1}}{N_A^{B-1}} = \frac{g_B^{A-1}}{g_A^{B-1}} [1 + \mathcal{O}(\{\mathcal{C}_{\alpha}\}_{|\alpha| \ge 3})].$$

Background effects cancel up to the 2nd order of cumulants

Note: Effect of matter expansions

- \rightarrow Coordinate-momentum (*r*-*p*) correlations in *f*()
- \rightarrow Canceled in the ratios up to 2nd order

$$\mathcal{C}_2 = 2 \begin{pmatrix} \langle \boldsymbol{r} \boldsymbol{r}^{\mathrm{T}}
angle & \langle \boldsymbol{r} \boldsymbol{p}^{\mathrm{T}}
angle \\ \langle \boldsymbol{p} \boldsymbol{r}^{\mathrm{T}}
angle & \sigma^2 \langle \boldsymbol{p} \boldsymbol{p}^{\mathrm{T}}
angle \end{pmatrix}$$

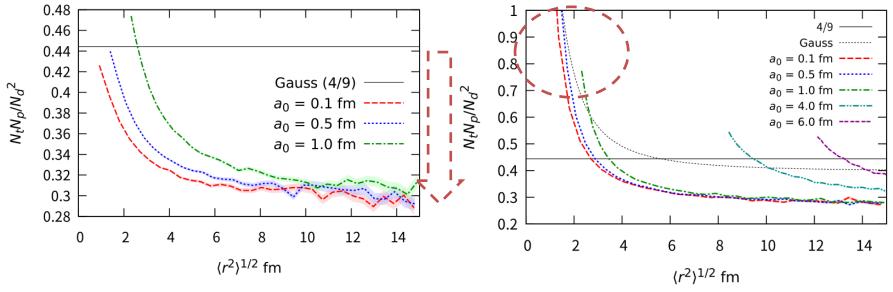
Case 1: Woods-Saxon (non-Gaussian case)

- Input

$$f(\boldsymbol{r}, \boldsymbol{p}) = \frac{\rho_{\text{WS}}}{1 + \exp{\frac{r - R_0}{a_0}}} \cdot \frac{1}{(2\pi mT)^{3/2}} \exp\left(-\frac{\boldsymbol{p}^2}{2mT}\right)$$

Result (common σ = 1.59 fm)

Effect of different nucleus-size (physical σ = 2.23, 1.59 for *d*, *t*)



The Woods-Saxon distribution decreases the ratio The different nucleus-size effect is significant when fireball size is close to σ

✓ spatial structure decreases the ratio

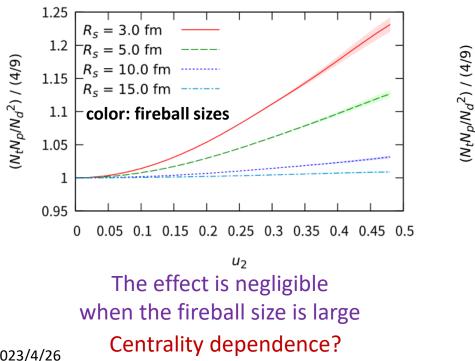
<u>Case 2: Anisotropic flow (Blast-wave)</u>

Input

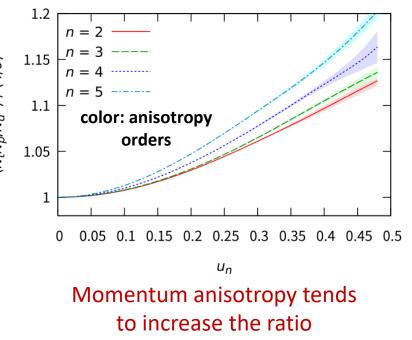
$$f(\mathbf{r}, \mathbf{p}) = \frac{\rho_0}{(2\pi mT)^{3/2}} e^{-\frac{r^2}{2R_s^2}} \exp\left(-\frac{m}{2T} \left[\frac{\mathbf{p}}{m} - \mathbf{v}(\mathbf{r})\right]^2\right),$$

$$\mathbf{v}(\mathbf{r}) = \frac{1}{R_s} (r_x, r_y, 0)^{\mathrm{T}} (1 + 2u_n \cos n\phi_s)$$
anisotropy param
Blast-wave flow P. Huovinen et al, PLB 503, 58 (2001)

Ratio vs anisotropy parameter (*n*=2)



Ratio vs anisotropy parameter ($R_s=5$)

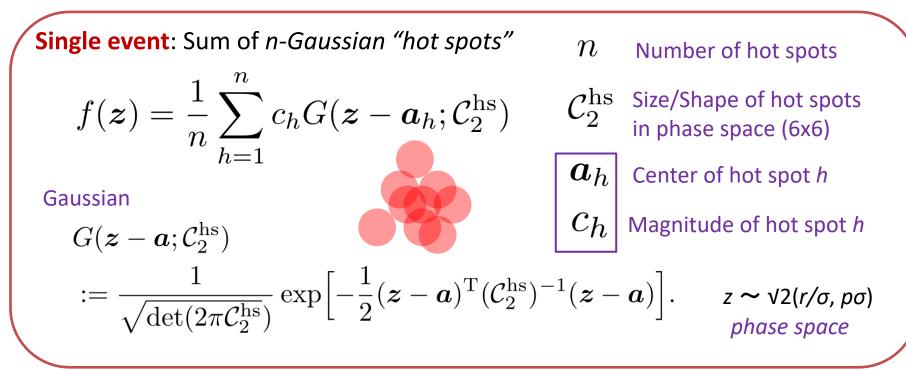


2023/4/26

2. EVENT-BY-EVENT FLUCTUATIONS

K. MURASE, S. WU, IN PREP.

Model for event-by-event distributions



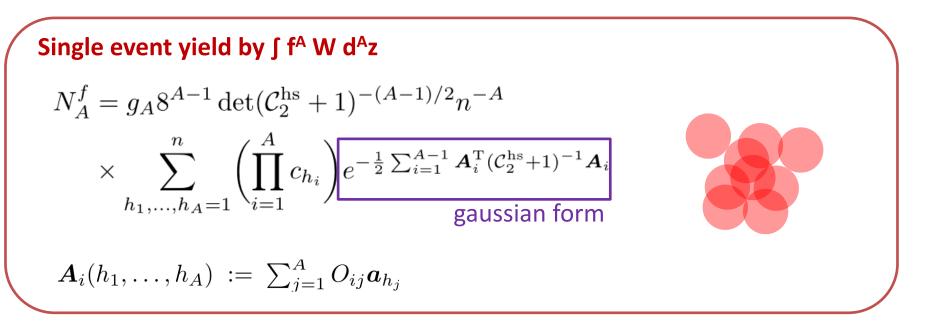
Event-by-event distribution of distribution function by **fluctuating** (c_i, a_i) .

Gaussian

$$\Pr(\{c_h, \boldsymbol{a}_h\}_{h=1}^n) = \prod_{h=1}^n p(c_h) \frac{e^{-\frac{1}{2}\boldsymbol{a}_h^{\mathrm{T}}(\mathcal{C}_2^{\mathrm{hc}})^{-1}\boldsymbol{a}_h}}{\sqrt{\det(2\pi\mathcal{C}_2^{\mathrm{hc}})}}$$

Covariance of hot-spot centers

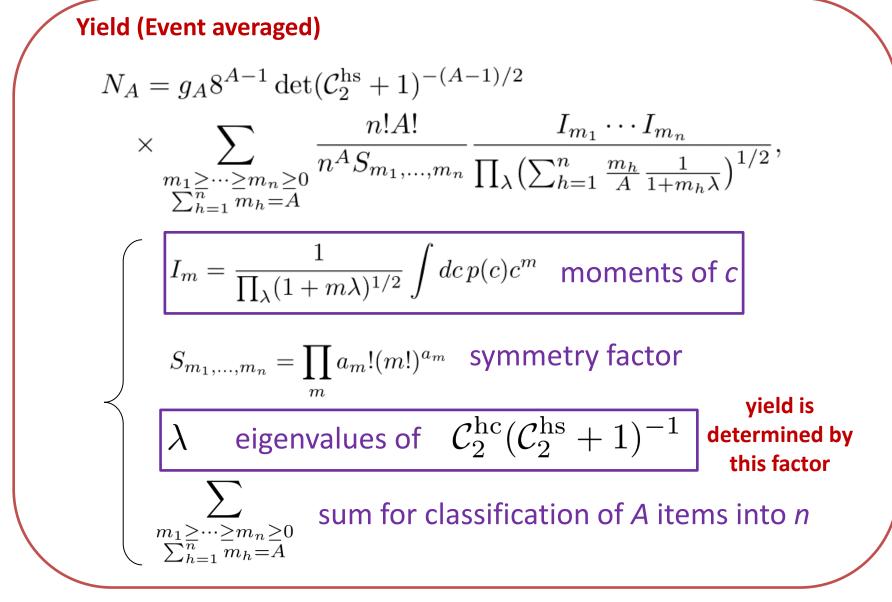
Result: Single-event yield



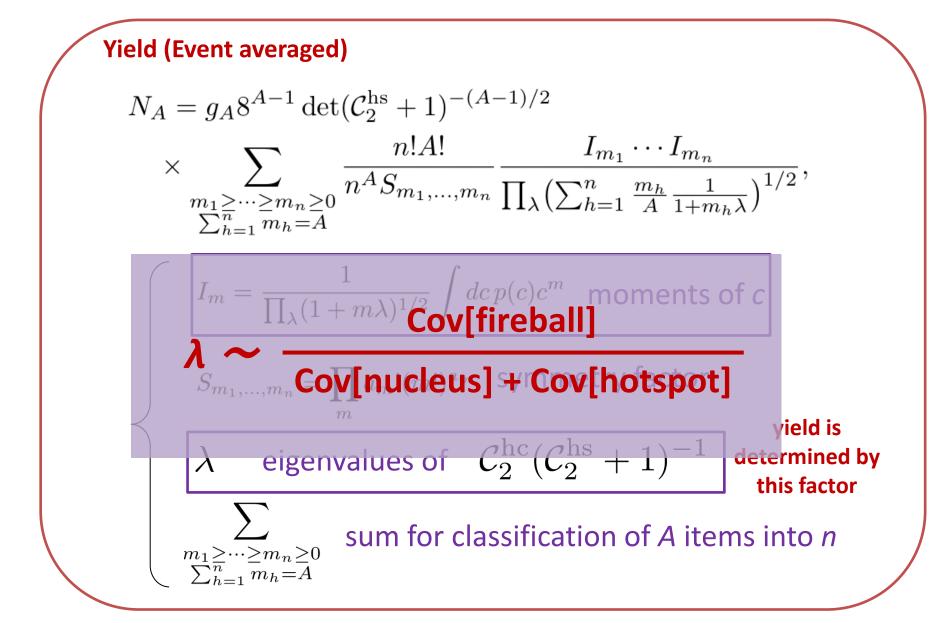
~ Gaussian as a function of hot-spot positions a

→ Perform event average with probability density $N_A = \int dadc \operatorname{Pr}(a,c) \times N_a^f$ $\operatorname{Pr}(\{c_h, a_h\}_{h=1}^n) = \prod_{h=1}^n p(c_h) \frac{e^{-\frac{1}{2}a_h^{\mathrm{T}}(\mathcal{C}_2^{\mathrm{hc}})^{-1}a_h}}{\sqrt{\det(2\pi \mathcal{C}_2^{\mathrm{hc}})}}$

<u>Result: Yield</u>



<u>Result: Yield</u>



<u>Result: Yield</u>

Examples A=2 (deuteron) & A=3 (tritons)

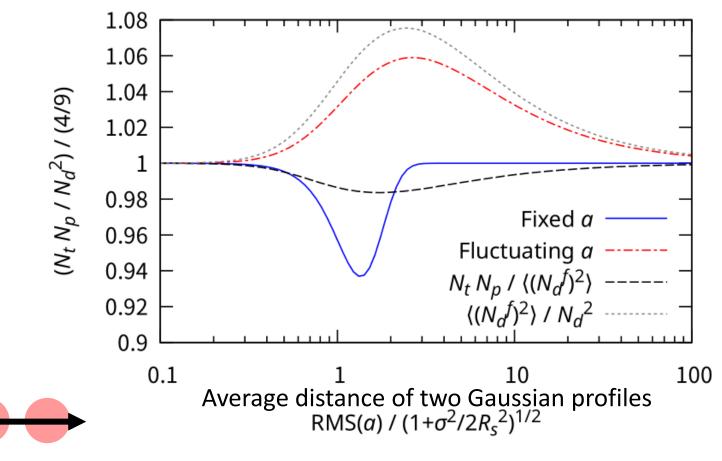
$$\begin{split} N_d &= \frac{8g_d}{\det(\mathcal{C}_2^{\mathrm{hs}}+1)^{1/2}} \frac{1}{n} \bigg[\langle c^2 \rangle + \frac{(n-1)\langle c \rangle^2}{\prod_{\lambda} (1+\lambda)^{1/2}} \bigg] \\ N_t &= \frac{8^2 g_d}{\det(\mathcal{C}_2^{\mathrm{hs}}+1)} \frac{1}{n^2} \bigg[\langle c^3 \rangle + \frac{3(n-1)\langle c^2 \rangle \langle c \rangle^2}{\prod_{\lambda} (1+\frac{4}{3}\lambda)^{1/2}} \\ &+ \frac{(n-1)(n-2)\langle c \rangle^3}{\prod_{\lambda} (1+\lambda)} \bigg]. \end{split}$$

Calculate yield ratio $N_p N_t / N_d^2$ \rightarrow Change parameters \rightarrow Check qualitative behavior

$N_t N_p / N_d^2$ with two Gaussian in 1d

n=1: single Gaussian Ratio = 4/9

n= ∞ : infinite number of hot spots Ratio = 4/9 (fluctuations smeared out) *n*=2: double Gaussian case (no fluctuations in magnitude *c*)

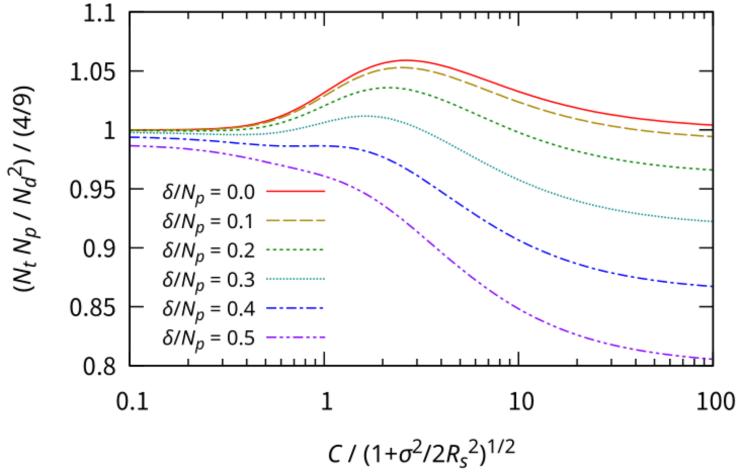


Position fluctuations increase the ratio

$N_{\underline{t}}N_{\underline{p}}/N_{\underline{d}}^2$ with two Gaussian in 1d

n=2: with magnitude fluctuations in *c*

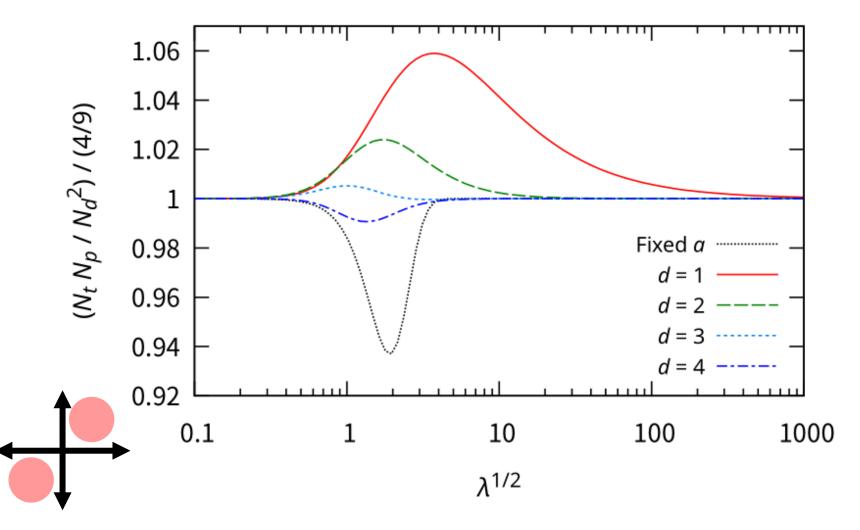
c: uniform distribution in $[N_p - \delta, N_p + \delta]$



Magnitude fluctuations decrease the ratio

$N_t N_p / N_d^2$ with two Gaussian

n=2: dimensionality of fluctuation directions *d* (rank of C₂^{hc})

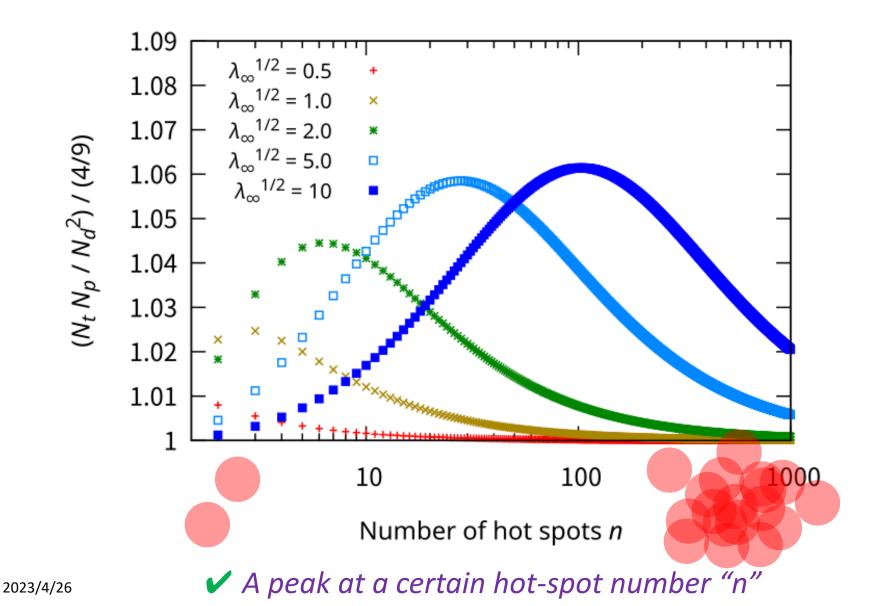


✓ The increase largely depends on the dimensionality

2023/4/26

$N_t N_p / N_d^2$ with *n* Gaussian

Change n ~ fluctuation granularity (λ adjusted to fix the fireball size as λ_{∞})



$N_t N_p / N_d^2$ with two fluctuation sources

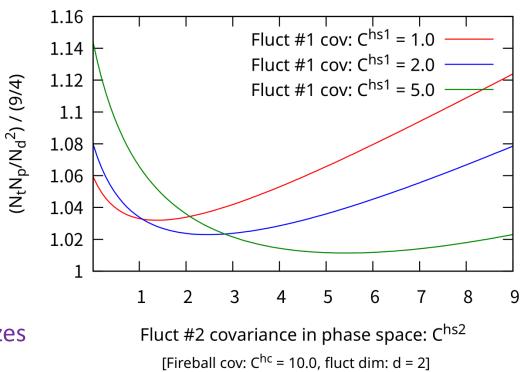
 $f \sim$ sum of two fluctuations sources with different hot-spot sizes C^{hs1} & C^{hs2}

$$\begin{split} f &= f_1 + f_2, \\ f_1 &= \frac{1}{n_1} \sum_{h=1}^{n_1} c_h G_1(\boldsymbol{z} - \boldsymbol{a}_h; \mathcal{C}^{\text{hs1}}), \\ f_2 &= \frac{1}{n_2} \sum_{h=1}^{n_2} c'_h G_2(\boldsymbol{z} - \boldsymbol{a}'_h; \mathcal{C}^{\text{hs2}}), \end{split}$$

E.g. critical fluctuations vs shorter-scale thermal fluctuations

Insufficient scale separation in HIC \rightarrow Can we differentiate them?

✓ The effect becomes larger when two sources have different sizes



<u>Summary</u>

- Yield ratio in heavy-ion is a candidate observable for the CP search
- Toy models with coalescence for a qualitative understanding
- Non-trivial background effect with phase-space cumulants
- Event-by-event fluctuations by *n*-Gaussian distribution function
 - Analytic formulae for yields
 - Position fluctuations increases the ratio.
 - <u>Magnitude fluctuations decrease</u> the ratio
 - The ratio takes a peak at a certain <u>hot-spot number</u> n
 - <u>Different sizes</u> of two fluctuation sources increase the ratio

<u>Outlook</u>

- Critical effect with critical correlators based on the Ising mapping
- HBT, Interpretation of the results in dynamical models, etc.