Extracting phi meson properties in nuclear matter from pA reactions

Philipp Gubler Japan Atomic Energy Agency (JAEA)

Talk at the "9th Asian Triangle Heavy-Ion Conference (ATHIC 2023)" Hiroshima, Japan April 24, 2023

Based on work done in collaboration with Elena Bratkovskaya (Frankfurt/GSI), Taesoo Song (GSI)

Why should we be interested?

The φ meson mass in nuclear matter probes the strange quark condensate at finite density!

 \mathcal{U}

More recent results

HADES: 1.7 GeV π^-A -reaction

K⁺K⁻ - invariant mass spectrum

Measurement of ϕN correlation

ALICE: pp

Even more recent results

How compare theory with experiment?

Information useful for theory

- Spectral function as a function of density
- Mass at normal nuclear matter density
- Decay width at normal nuclear matter density

Realistic simulation of pA reaction is needed!

Experimental data

Our tool: transport simulation PHSD (Parton Hadron String Dynamics)

E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).W. Cassing and E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

Off-shell dynamics of vector mesons and kaons

(dynamical modification of the mesonic spectral function during the simulated reaction)

Simulated scenarios:

What density does the ϕ feel in the reaction (p+Cu at 12 GeV)?

The dilepton spectrum in the ϕ meson region

p + Cu at 12 GeV

No acceptance corrections!

No finite resolution effects!

No QED effects!

How do experimental rescattering and QED effects modify the dilepton spectrum?

Fits to experimental Copper target data (KEK, E325)

dN/d ω [GeV⁻¹]

Fits to experimental Copper target data (KEK, E325)

Summary of results for Copper target data (E325)

D. Cabrera et al., Phys. Rev. C 95, 015201 (2017).

Outlook

 A lot of new experimental information about the φN interaction is becoming available (LHC, J-PARC, HADES)

Many opportunities for theorists!

★ New proposal at J-PARC to measure the K⁺ + K⁻ decay

Accurate information about the KN interaction will be essential

Summary and Conclusions

★ Relating modification of QCD condensates with hadron properties in nuclear matter is a non-trivial multi-step process

★ For studying the modification of the φ meson spectral function experimentally at finite density, a good understanding of the underlying reactions is needed

★ We conducted numerical simulations of the pA reactions measured at the E325 experiment at KEK, using the HSD transport code

Momentum-dependent mass shift is needed to explain the data

Backup slides

Consistency with QCD sum rules and lattice calculations?

Consistency would get much worse if the ϕ meson mass shift is about -100 MeV!!

The importance of off-shell contributions

1.0

C+C, 2.0 A GeV, b=1 fm dropp. mass + coll. broad.

0.8 0.6 0.4 [a.u.] 0.8 0.6 0.6 0.4 p-meson p-meson off-shell on-shell 0.2 Off-shell Only on-shell contributions: contributions Vacuum spectral function time [fm/c] time [fm/c] M [GeV/c²] M[GeV/c²] included: are not recovered at late 40 0.0 40 0.0 correct behavior time of the reaction ω-meson ω-meson off-shell on-shell 0.8 0.6 0.4 [a.u.] 0.2 0.2 0.2 0.4 0.6 0.8 M[GeV/c²] **^**1.0 time [fm/c] time [fm/c] 0.2 0.4 0.6 M[GeV/c²] 40 0.0 40 0.0

Taken from: E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).

Example of a transport calculation

Au+Au collision at $s^{1/2}$ = 200 GeV, b = 2 fm

Reason for large modification for fast ϕ mesons

Initial stage of ϕ meson production?

What does lattice QCD say about the strange sigma term?

http://flag.unibe.ch/2019/

See also the most recent result of the BMW collaboration: Sz. Borsanyi et al., arXiv:2007.03319 [hep-lat].

 $\sigma_{sN} = m_s \langle N | \overline{s}s | N \rangle$

Combine QCD sum rules with lattice QCD

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

The strangeness content of the nucleon: $\sigma_{sN} = m_s \langle N | \bar{s}s | N \rangle$ Important parameter for dark-matter searches! Neutralino: Linear superposition of the \widetilde{N}_{1}^{0} Super-partners of the Higgs, the Factor of m₋ in coupling H⁰ photon and the Z-boson Adapted from: d u W. Freeman and D. Toussaint (MILC Collaboration), u Hadronic part Phys. Rev. D 88, 054503 (2013). $\sigma_{\text{scalar}}^{(\text{nucleon})} = \frac{8G_F^2}{\pi} M_Z^2 m_{\text{red}}^2 \left[\frac{F_h I_h}{m_h^2} + \frac{F_H I_H}{m_H^2} \frac{M_Z}{2} \sum \langle N | \bar{q}q | N \rangle \sum_i P_{\tilde{q}_i} (A_{\tilde{q}_i}^2 - B_{\tilde{q}_i}^2) \right]^2$ most important contribution $I_{h,H} = k_{u-\text{type}}^{h,H} g_u + k_{d-\text{type}}^{h,H} g_d$

dominates

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. 18, 205 (2002).

 $g_d = \frac{2}{27} \left(m_N + \frac{23}{4} \sigma_{\pi N} + \frac{25}{2} \sigma_{s N} \right)$

Structure of QCD sum rules for the ϕ meson channel

(after application of the Borel transform)

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$

In Vacuum

Dim. 0:
$$c_0(0) = 1 + \frac{\alpha_s}{\pi}$$

Dim. 2:
$$c_2(0) = -6m_s^2$$

Dim. 4:
$$c_4(0) = \frac{\pi^2}{3} \langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle + 8\pi^2 m_s \langle 0 | \overline{ss} | 0 \rangle$$

 $\chi(x) = \overline{s}(x)\gamma_{\mu}s(x)$

Dim. 6:
$$c_6(0) = -\frac{448}{81}\kappa\pi^3\alpha_s \langle 0|\bar{s}s|0\rangle^2$$

Structure of QCD sum rules for the ϕ meson

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$

At finite density

(within the linear density approximation)

Dim. 0: $c_0(\rho) = c_0(0)$ $\langle \bar{s}s \rangle_{\rho} = \langle 0|\bar{s}s|0 \rangle + \langle N|\bar{s}s|N \rangle \rho + ...$ Dim. 2: $c_2(\rho) = c_2(0)$ Dim. 4: $c_4(\rho) = c_4(0) + \rho[-\frac{2}{27}M_N + \frac{56}{27}m_s \langle N|\bar{s}s|N \rangle + \frac{4}{27}m_q \langle N|\bar{q}q|N \rangle + A_2^s M_N - \frac{7}{12}\frac{\alpha_s}{\pi}A_2^g M_N]$ Dim. 6: $c_6(\rho) = c_6(0) + \rho[-\frac{896}{81}\kappa_N\pi^3\alpha_s \langle \bar{s}s \rangle \langle N|\bar{s}s|N \rangle - \frac{5}{6}A_4^s M_N^3]$

Results for the φ meson mass at rest

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

Recent experimental results HADES: $1.7 \text{ GeV } \pi^-\text{A-reaction}$

★ Larger suppression of K⁻ in the Tungsten target compared to the Carbon target

 K⁻/φ ratio is similar for both Tungsten and Carbon targets

Observation of large suppression
 (broadening?) of the φ meson in large nuclei

K⁺K⁻ - invariant mass spectrum

J. Adamczewski-Musch et al. (HADES Collaboration), Phys. Rev. Lett. 123, 022002 (2019).

Even more recent results

HADES: 1.7 GeV π^-A -reaction

K⁺K⁻ - invariant mass spectrum

Theoretical calculation by E. Ya. Paryev: E. Ya. Paryev, Nucl. Phys. A **1032**, 122624 (2023).

Attractive φ-nucleus potential: -(50 - 100) MeV Combination of ALICE pp-data and HAL QCD (spin 3/2) calculation

Attractive ϕ -nucleus potential \approx -100 MeV

New experimental results

S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett. 127, 172301 (2021).

New experimental results ALICE

Measurement of ϕN correlation

S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett. **127**, 172301 (2021).

New experimental results ALICE

Fit of the correlation function data to two simple phenomenological potentials

$$V_{\text{Yukawa}}(r) = -\frac{A}{r}e^{-\alpha r}$$

$$A = 0.021 \pm 0.009 \text{ (stat.)} \pm 0.006 \text{ (syst.)}$$

$$\alpha = 65.9 \pm 38.0 \text{ (stat.)} \pm 17.5 \text{ (syst.)} \text{ MeV}$$

$$V_{\text{Gaussian}}(r) = -V_{\text{eff}}e^{-\mu r^{2}}$$

$$V_{\text{eff.}} = 2.5 \pm 0.9 \text{ (stat.)} \pm 1.4 \text{ (syst.)} \text{ MeV}$$

$$\mu = 0.14 \pm 0.06 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \text{ fm}^{-2}$$
S. Acharya et al. (ALICE Collaboration), arXiv:2105.05578 [nucl-ex].

Our tool: a transport approach

Basic Ingredient 1: Solve a Boltzmann-Uehling-Uhlenbeck (BUU) type equation for each particle type

$$\begin{pmatrix} \frac{\partial}{\partial t} + \vec{\nabla}_{p} \epsilon \cdot \vec{\nabla}_{r} - \vec{\nabla}_{r} \epsilon \cdot \vec{\nabla}_{p} \end{pmatrix} f_{a}(\vec{r}, \vec{p}; t) = I_{\text{coll}}[f_{a}(\vec{r}, \vec{p}; t)]$$
Includes mean field particle distribution (tuned to reproduce nuclear matter properties)

Basic Ingredient 2: "Testparticle" approach

$$f_h(\boldsymbol{r}, \boldsymbol{p}; t) = \frac{1}{N_{\text{test}}} \sum_{i}^{N_h(t) \times N_{\text{test}}} \delta(\boldsymbol{r} - \boldsymbol{r}_i(t)) \ \delta(\boldsymbol{p} - \boldsymbol{p}_i(t))$$

Example of a transport calculation

Au+Au collision at $s^{1/2}$ = 200 GeV, b = 2 fm

Final step: comparison to experimental data

- Potential issues: **★** Experimental background is not included in the simulation
 - Normalization of the experimental dilepton spectrum is not given

Fit to experimental data is necessary!

$$\begin{array}{cc} & \text{Background} & \phi \text{ meson signal} \\ \hline \text{Dilepton spectrum:} & \rho(\omega) = a\omega^2 + b\omega + c + A\rho_{\phi,\text{HSD}}(\omega) \end{array}$$

Fitted to the experimental dilepton spectrum independently for each $\beta\gamma$ -region

Fits to experimental Copper target data (E325)

dN/dm [GeV⁻¹.

What about the K⁺K⁻ decay channel?

Kaons do not feel the strong interaction

Clear in-medium φ meson signal

Small branching ratio

Treatment of KN-interactions

Density dependent cross sections based on the chiral unitary model (including coupled channels and s-/p-wave of $\overline{K}N$ interactions)

T. Song et al., Phys. Rev. C **103**, 044901 (2021).

See talk by Laura Tolos on Tuesday

Distortion of the in-medium φ meson signal in the K⁺K⁻ channel (p + Cu at 30 GeV)

Small distortion effect from the strong KN interaction !?