
Meeting on CCT magnet based on NbTi for IFAST

15th September 2022 Ernesto De Matteis

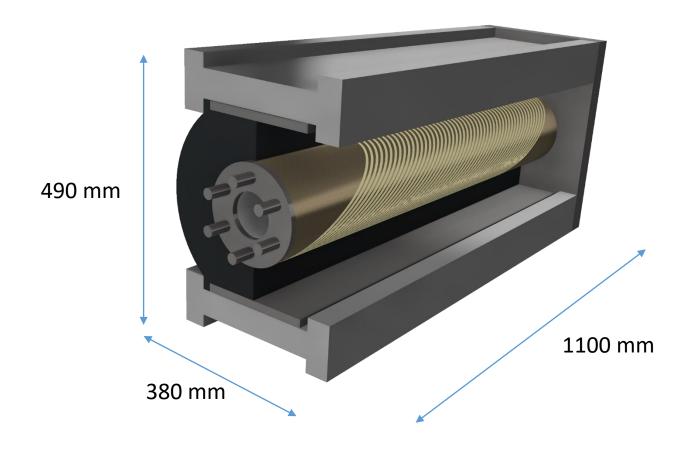
IFAST WP8 Gantt & Deliverables and Milestones

IFAST WP8: Innovative Superconducting Magnets
Task 8.1 - Coordination and High-Temperature Superconductor (HTS) Strategy Group
Task 8.2 - Preliminary Engineering design of combined Canted Cosine Theta (CCT) magnet
Task 8.3 - Preliminary Engineering design of HTS CCT
Task 8.4 - Construction of combined CCT magnet demonstrator
Task 8.5 - Construction of the HTS CCT magnet demonstrator
Task 8.6 - Development of ReBCO HTS nuclotron cable

https://ifast-project.eu/wp8-innovative-superconducting-magnets

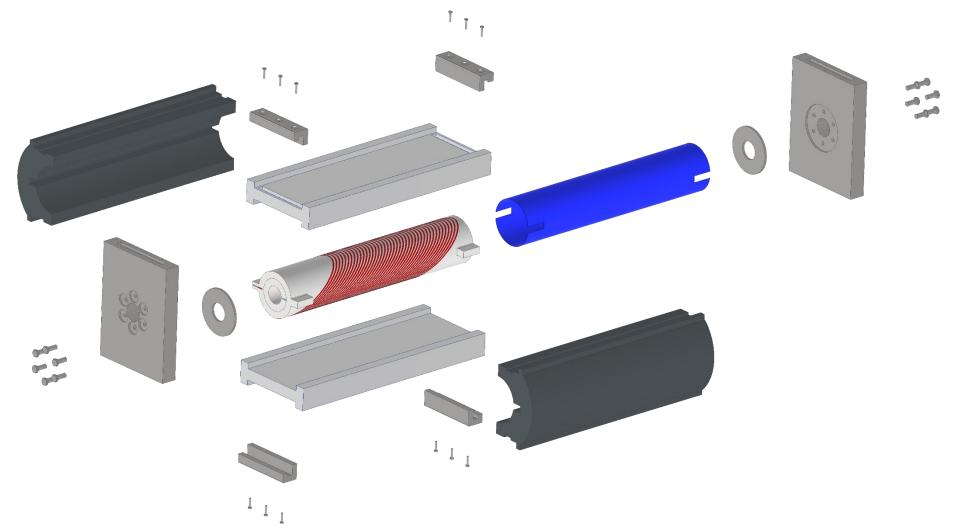
- Milestone:
 - M4 (12/2023): Construction of the formers for combined CCT winding (Rep. Conformity Certification)
- Deliverable:
 - D4 (06/2024): Construction of combined CCT demonstrator
 - Magnet demonstrator complete with electrical termination and transport constrains

E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

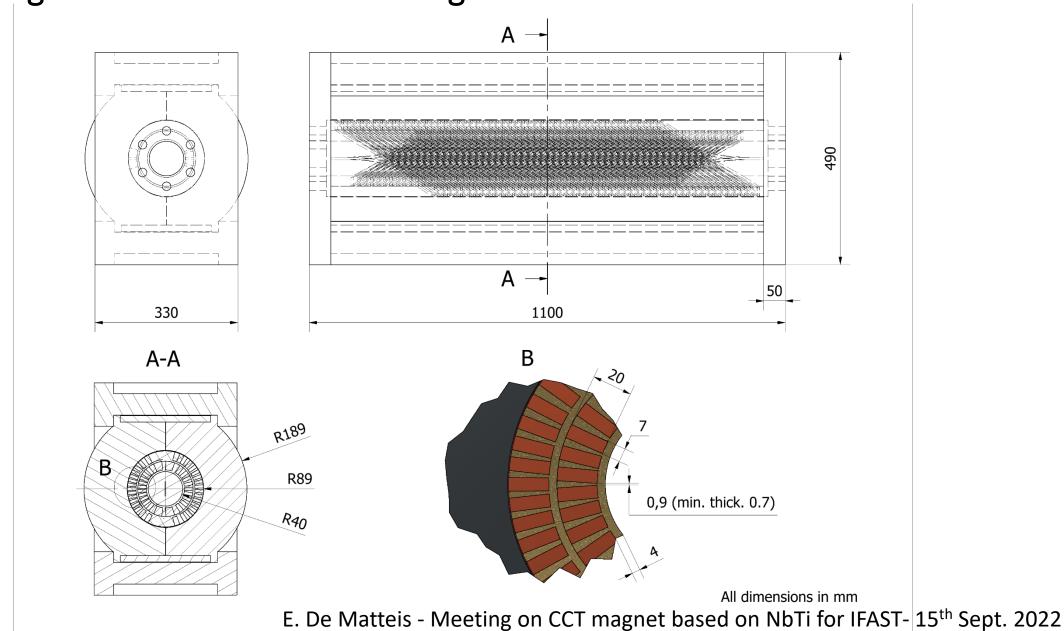

List of target parameters

Parameters	Values	unit	Comments
Magnet type	CCT + Iron	-	Iron used as magnetic shield and mech. collar
Geometry	Straight, combined	-	Dipole + quadrupole (5 T/m)
Central magnetic field B ₀	4	Т	as HITRIplus and SIGRUM demostrators
Magnetic and physical length	0.8, 1	m	Mainly due to performance/cost optimization
Bore diameter	80	mm	as HITRIplus and SIGRUM demostrators
dB/dt	0.4	T/s	as HITRIplus and SIGRUM demostrators
Operation temperature	4.7	K	Helium gas + Cryocoolers
Loadline margin (@4.7 K) static	25	%	
Superconductor	NbTi	-	Discorap strand (III production)

Deliverable 8.2 – Conceptual Design of combined CCT in LTS https://zenodo.org/record/6389851#.Yxmp2nZByUl


E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

CCT magnet based on NbTi - model

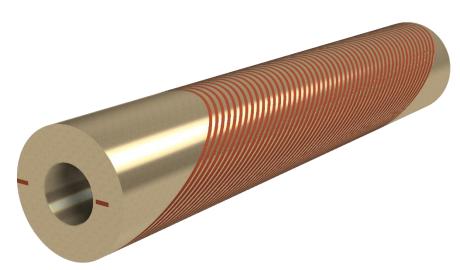

E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

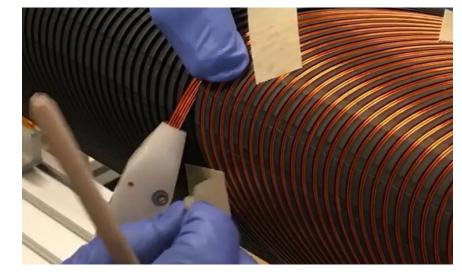
CCT magnet based on NbTi - model

E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

CCT magnet based on NbTi – drawing sizes

CCT magnet based on NbTi - Formers


Al Br Outer former

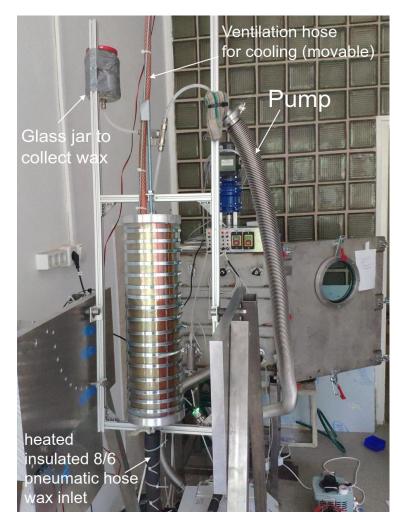


M4 (12/2023): Construction of the formers for combined CCT winding (Rep. Conformity Certification)

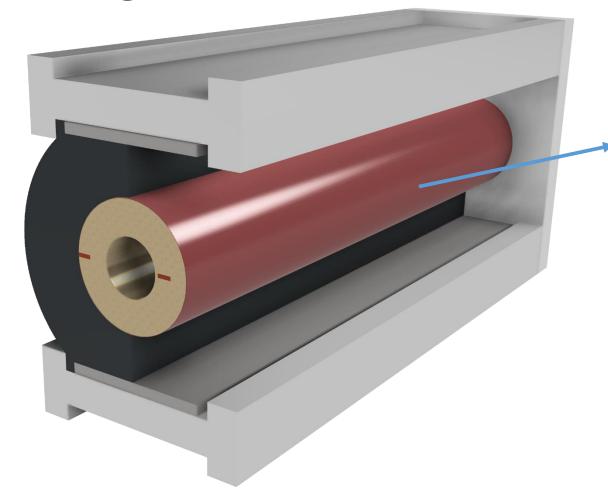
E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

CCT magnet based on NbTi - Winding

Hilumi CCT method applied to ropes?

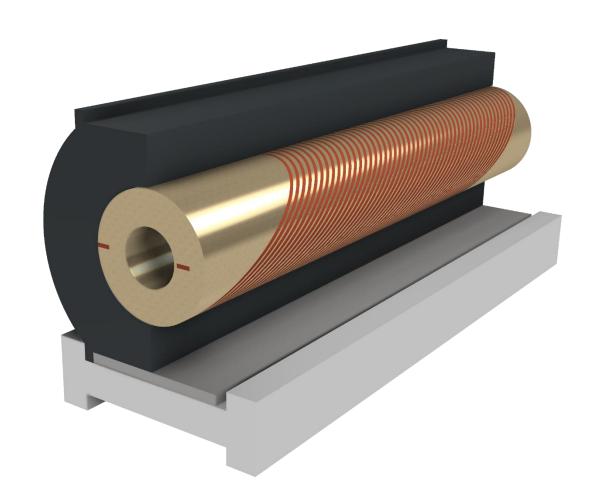

CCT magnet based on NbTi - Impregnation

Materials:


- Wax or Bees Wax;
- Epoxy resin

Vacuum oven:

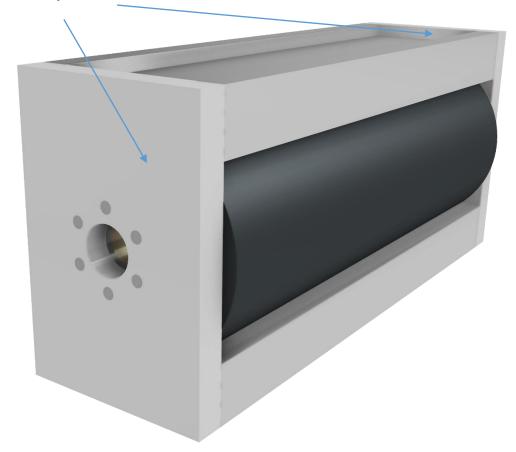
- Wax temperature range btw 55°-65°
- Resin temperature range up to 130°

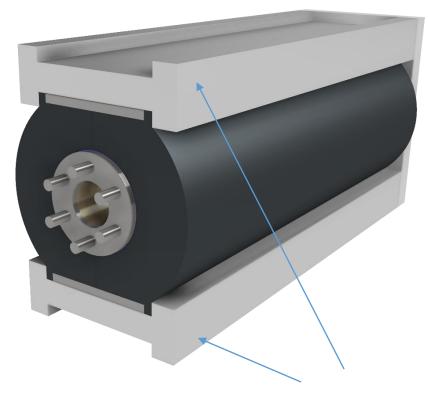

CCT magnet based on NbTi – Former protection

Protective layer between mandrel-conductor and iron yoke:

Overlapped strips of fiberglass, and/or Kapton?

CCT magnet based on NbTi – Iron yoke laminations




Iron laminations:

- Thickness of 5- 6 mm;
- ARMCO (99.9% of iron);

CCT magnet based on NbTi - model

End plates in stainless steel

Clamps in aluminum

E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

NbTi conductor parameters (D2 – IFAST)

Parameters	Values	unit
Strand type	Round	-
Diameter	0.821	mm
(Cu/NoCu) α	1.36	-
Jc (5T @ 4.2 K)	2300	A/mm ²
Ic (5T @ 4.2 K)	516	А
RRR	135	-
Filament diameter	3.15	μm

Milestone MS32: Characterization of the first length of superconductor for low losses (submitted)

https://zenodo.org/record/5901601#.YxmnQ3ZByUl

IFAST

Innovation Fostering in Accelerator Science and Technology Horizon 2020 Research Infrastructures GA no 101004730

MILESTONE REPORT

Characterization of the first length of superconductor for low losses

MILESTONE: MS32

Document identifier: IFAST-MS32

Due date of milestone: End of Mouth 6 (October 2021)

Justification for delay: Completion of the measures

Report release date: 12/11/2021

Work package: WP8: [Innovative Superconducting Magnets]

Lead beneficiary: INFN

Document status: Draft 1.0

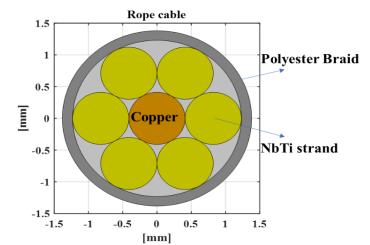
ABSTRACT

The document is a measurement report concerning the characterization of the NATA low losses superconductor wire.

The measurement report collects the following measurements: critical current, RRR and magnetization measurements. The critical current and RRR measurements have been performed at LASA laboratory of INFN (Milan, Italy). A crosscheck measurement for the critical current has been done by CERN. The magnetization measurements have been performed by the Group of Applied Superconductivity of the Faculty of Sciences of the University of Geneva (Linical Switzerland).

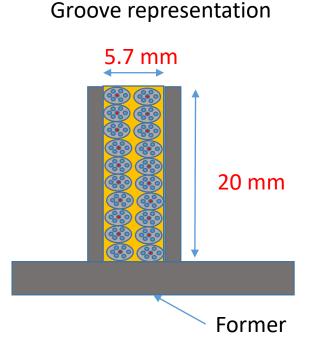
Grant Agreement 101004730

1714


Cable parameters

Parameters	Values	unit	Comments
Туре	Ropes (6+1)	-	Central strand in copper or in NbTi?
Total current (5 T @ 4.7 K)	1500	А	
J _{rope} (5 T @ 4.7 K)	235	A/mm ²	
Insulating thickness	0.12 - 0.13	mm	Double braid of polyester

Test rope made of 7 NbTi strands and a single **polyester braid**



E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022

CCT parameters (D2 – IFAST) Inner and Outer

Parameters	Values	unit	Comments	
Pitch	15	mm		
Winding angle	26°			
Groove width	5.7 (2.85 mm x 2)	mm	The final ones will be decided after	
Groove height	20 (2.85 mm x 7)	mm	the winding test	
Minimum ribs thickness	0.7	mm	Post mechanical tests	
Spar	4	mm		
# ropes per groove	14			
# turns per layer	51			
Iron, Former distance	2	mm	Iron is used as collar	
Max external field B _{ext}	0.5	mT	at 2 m of distance from the magnet	
Former material	Aluminum Bronze	-	Main constraint from the eddy currents	

E. De Matteis - Meeting on CCT magnet based on NbTi for IFAST- 15th Sept. 2022