

Michele Selvaggi CERN

FCC Physics Workshop '23 Krakow

Higgs Physics experimental overview

FCC-ee program

- ee-collider (FCC-ee) (2/4 IPs):
 - $\sqrt{s} = 90 \text{ GeV} (5 \ 10^{12} \text{ Z}' 4 \text{ yrs})$
 - $\sqrt{s} = 160 \text{ GeV} (10^8 \text{ W} 2 \text{ yrs})$
 - $\sqrt{s} = 240 \text{ GeV} (10^6 \text{ H} 3 \text{ yrs})$
 - $\sqrt{s} = 365 \text{ GeV} (5 \ 10^{12} \text{ top} 5 \text{ yrs})$

- FCC-ee offers ideal environment for Higgs
 physics
 - large rates (> le6)
 - clean exp. environment (no UE, Pile-up, low event rate)
 - Large S/B (no QCD background)

- Production mechanisms
 - Higgs-strahlung
 - VBF

 $L = 5 ab^{-1}$

 $L = 1.5 \text{ ab}^{-1}$

2IP

ZH = 10⁶ VBF = 2x10⁴ $ZH = 2.5 \times 10^{5}$ VBF = 5 × 10⁴

Overview of Higgs analyses

- Intrinsic properties
 - mass
 - ZH cross section (decay mode independent)
 - width •
 - self-coupling (FCC-ee/hh)
- Higgs couplings
 - vector bosons
 - jets bb/cc/gg/ss
 - electron (production)
 - taus
 - rare $(\mu\mu/\gamma\gamma/Z\gamma)$

Goal: establish the detector requirements that maximise the Higgs physics potential

- - 2025

• as part of the FCC <u>Feasibility Study</u>, to be completed by the end of

• Mid-term review of feasibility study in 2023

Overview of Higgs analyses

- $H \rightarrow$ hadrons
 - Z(II) H (Marchiori, Maloizel Paris, CERN) Z(vv)H (Del Vecchio, Gouskos, MS - CERN) • Z(jj) H (Aly, Bari)
- $Z \rightarrow X H \rightarrow anything (recoil)$
 - $\circ Z \rightarrow II/jj:$
 - xsec, mass (Eysermans, Bernardi, Li MIT, Paris) Self coupling (Salerno/Portales, Lemmon - LLR/Liverpool/Brookhaven)
- $H \rightarrow invisible$ (Mehta, Rompotis Liverpool)
- $H \rightarrow \tau \tau$ and BSM (Cepeda Madrid, KIT)
- ee \rightarrow H (d'Enterria, Guntam CERN/Hamburg)
- FCC-hh HH combination (MS, Taliercio, Caputo, Stapf, Gallo CERN, NWU, DESY)

Detector description and samples

Detector simulation baseline:

- IDEA with Delphes
 - full track covariance reconstruction
 - Jet tagging using Weaver/Particle NET
 - Flavors: g/b/c/s/light

- Recent updates:
 - "Realistic" electron description
 - including brem recovery

Perez, MS

- smaller beampipe
- ECAL crystal for better ele/photon performance •
- Samples:
 - Wizard3+ Pythia6

Portales

Pythia8

http://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php

Bedeschi, MS

Del Vecchio, Garcia Marti, Gouskos, MS

IDEA

FCC-ee recoil

Precise knowledge of center of mass allows for:

- tag the Z by reconstructing pair of leptons
- reconstruct the the recoil mass

$$m_{\rm recoil}^2 = s - 2\sqrt{s}E_{\rm di-lepton} + m_{\rm di-lepton}^2$$

Higgs recoil mass measurement \rightarrow ZH production cross section:

- I0⁶ Higgs produced @ FCC-ee
 - rate ~ $g_Z ^2 \rightarrow \delta g_Z / g_Z \sim 0.2 \%$
- Then measure $ZH \rightarrow ZZZ$
 - rate ~ $g_Z 4 / \Gamma_H \rightarrow \delta \Gamma_H / \Gamma_H ~ 1 \%$
- Then measure $ZH \rightarrow ZXX$
 - rate ~ $g_Z^2 g_X^2 / \Gamma_H \rightarrow \delta g_X / g_X \sim 1\%$

Provides absolute and model **independent** measurement of g_Z coupling in e+e-

Z(II)H cross-section measurement

Goals:

O(<%) on cross-section •

Event selection:

- at least 2 leptons
- tight m_z selection [86,96] GeV
- p(μμ) > 20,70 GeV
- cos(θmiss)

A. Li's talk (Friday)

Bernardi, Li

Cross-section:

- Cut-based only $\mu\mu$ •
 - δσ_{ZH} ~ 0.95% (model dep.)
 - $\delta \sigma_{ZH} \sim 1.43\%$ (model indep.)
- BDT:
 - $\delta \sigma_{ZH} \sim 1.28\%$ (model indep.)
- Next: combined with ee; •
 - δσ_{ZH} ~ 0.9-1.0?

cut-based

bdt

Higgs mass measurement

Goals:

• O(few MeV) precision on m_H

Event selection (common with sec):

- at least 2 leptons
- tight m_z selection [86,96] GeV
- p(μμ) > 20,70 GeV
- measurement differential in θ

Systematics:

- Beam energy spread ~ 2e-03
- C.O.M energy ~ 2e-05
- Lepton scale ~ 2e-05
- ISR ~ t.b.d

Jan Eysermans

MH precision:

- Muon channel:
 - 5.1 MeV
- **Electron channel:**
 - 6.2 MeV
- Combined:
 - 3.8 MeV (stat. only)
 - 4.3 MeV (stat+syst)

A. Li's talk (Friday)

2**ANLI**

Higgs self-coupling

MS, MLM, Ortona

%-level precision only at the FCC-hh

@68% CL	scenario I	scenario II	scenario III
ppyy	3.8	5.9	10.0
bbττ	9.8	12.2	13.8
bbbb	22.3	27.1	32.0
comb.	3.4	5.1	7.8

New effort started (new channel/extended parameter space/ revisited detector performance) Salerno, Harringer, Lemmon, Portales

FCC-ee: from radiative corrections to ZH/VBF single H production (√s=240, 365 GeV)

A. Li's talk (Friday)

• state of the art fit to self-coupling precision:

- 19% kl alone vs 33% full (EFT projected) with 2IPs
- I4% kl alone vs 24% full (EFT projected) with 4IPs

<u>J. De Blas (today)</u>

Electron Yukawa

- s-channel production with beam mono-chromatisation at $\sqrt{s} = 125 \text{ GeV}$
 - ISR+FSR leads to 40% + with beam spread ~ $\Gamma_{\rm H}$ • another 45% ($\sigma \sim 280 \text{ ab}^{-1}$)
 - plus potentially uncertainty on the Higgs mass
 - can hope for $y_e < 1.6 y_e$ (SM) with 4 (2) years of • running with 2 (4) IPs
 - potentially improve with exclusive $e \rightarrow gg(cc)$

D'Enterria

Higgs decay channel	\mathbf{BR}	$\sigma \times \mathrm{BR}$
		(ISR $\!\otimes\!$ spread incl.)
$H \rightarrow b\overline{b}$	58.2%	164 ab
$H \rightarrow gg$	8.2%	23 ab
$H \to \tau \tau$	$6.3\%{ imes}60\%{ imes}60\%$	6.5 ab
$H \to c\overline{c}$	2.9%	8 ab
$H \to WW \to \ell \nu \ 2j$	$21.4\%{ imes}67.6\%{ imes}32.4\%{ imes}2$	26 ab
$H \to WW \to 2\ell \; 2\nu$	$21.4\%{ imes}32.4\%{ imes}32.4\%$	6.3 ab
$H \to WW \to 4j$	$21.4\%{ imes}67.6\%{ imes}67.6\%$	28 ab
$H \rightarrow ZZ \rightarrow 2j \ 2\nu$	$2.6\%{ imes}70.\%{ imes}20.\%{ imes}2$	2 ab
$H \to ZZ \to 2\ell \ 2j$	$2.6\%{ imes}70.\%{ imes}10.\%{ imes}2$	1 ab
$H \to ZZ \to 2\ell \ 2\nu$	$2.6\%{ imes}20.\%{ imes}10.\%{ imes}2$	0.3 ab
$H ightarrow \gamma \gamma$	0.23%	0.65 ab

Higgs to invisible

- Higgs could be a portal to dark matter or other new physics
- In the SM B(H \rightarrow inv) ~ 10⁻³ ٠
- Use recoil method to reconstruct the Higgs •
 - potential to improve I order of magnitude compared to LHC
- Event selection:
 - Split events into exactly 2e, 2μ and $0 e + \mu$ (bb/qq)
 - Reconstruct Z from 2 leptons or M_{vis}
 - Reconstruct M_{miss} from all visible particles •
 - Use distribution of M_{miss} in likelihood fit •

~ 100% sensitivity on SM BR($H \rightarrow inv$)

Mehta, Rompotis

A. Mehta (today)

Higgs to hadrons (Z(LL)) <u>G. Marchiori (Friday)</u>

- ee \rightarrow ZH \rightarrow IIjj
 - j = b, c, s, g
- Event pre-selection:
 - build recoil mass

one $Z(\ell \ell)$ candidate $m_{\ell\ell}$ in 81–101 GeV $|\cos\theta_{\ell\ell}| < 0.8$ $m_{\rm recoil}$ in 120–140 GeV m_{jj} in 100–140 GeV $p_{\rm miss} < 30~{\rm GeV}$ no leptons with p > 25 GeV $d_{23} > 2, d_{34} > 1.5, d_{45} > 1.0$

- Final selection and signal extraction:
 - multi-score BDT using jet tagger output to maximise purity in
 - bb/cc/ss/gg/other final states
 - simultaneous un-binned fit on m_{recoil} on 4/5 signal strength modifiers POIs

Marchiori, Maloizel

Hgg Hnonhad Hss

	~		
Signal strength	Unce 5 POIs 4	tainty (POIs	(%) 3 POIs
$b\overline{b}$	0.86	0.86	0.86
$car{c}$	6.44	6.45	6.43
gg	3.50	3.47	3.20
other	3.08	3.09	-
<u>e ē</u>	540	-	-

Higgs to hadrons (Z(VV))

- ee \rightarrow ZH \rightarrow vv j j
 - j = b, c, s, g

Final States	Cross-section [pb]	BR(H)	BR(Z)	Expected Yields
signal				
Z(u u)H(uu/dd)	0.201868		0.2	
$Z(\nu\nu)H(bb)$	0.201868	0.571	0.2	$1.34\cdot 10^5$
Z(u u)H(cc)	0.201868	0.0291	0.2	$6.68\cdot 10^3$
Z(u u)H(ss)	0.201868	$2.50\cdot 10^{-4}$	0.2	55
Z(u u)H(gg)	0.201868	0.0853	0.2	$1.89\cdot 10^4$
$Z(\nu\nu)H(\tau\tau)$	0.201868	0.0626	0.2	$1.45\cdot 10^4$
background				
ZZ	1.35899	-	-	$6.79\cdot 10^6$
WW	16.4385	-	-	$8.22\cdot 10^7$
Z	52.6539	-	-	$2.63\cdot 10^8$
$Z(\nu\nu)H(WW)$	0.201868		0.2	$4.97\cdot 10^4$
Z(u u)H(ZZ)	0.201868		0.2	$6.10\cdot 10^3$
Z(qar q)H	0.201868			$6.82\cdot 10^5$

- Strategy:
 - Event preselection
 - lepton veto (orthogonalise)
 - build bb/cc/ss/gg orthogonal enriched categories using max sum of jet scores

Del Vecchio, Gouskos, MS

G. Marchiori (Friday)

Higgs to hadrons (Z(VV))

- ee \rightarrow ZH \rightarrow vv j j
 - j = b, c, s, g

- Strategy (continued):
 - for each signal category (bb/cc/ss/gg)
 - define LP/MP/HP categories based on $s(j_1) + s(j_2)$
 - perform a 2D (m_{jj}, m_{recoil}) template fit on each of the 3x4 categories

~ almost reaching SM sensitivity for $H \rightarrow ss$

G. Marchiori (Friday)

Del Vecchio, Gouskos, MS

Achievable precision:

decay	δμ/μ (%)
bb	0.4
gg	1.2
СС	2.8
SS	160

Conclusions & outlook

- Higgs activities are gaining in momentum
- Contact us if interested to join the effort
- Monthly informal meetings
- Many uncovered areas:
 - Higgs rare decays (μμ/γγ/Ζγ)
 - Higgs Width (HWW/HZZ)
 - Higgs @365 GeV
 - Higgs to taus (polarisation/CP)
 -

Join the effort for an exciting future !

FCC-ee Higgs conveners Performance

Michele Selvaggi, Jan Eysermans

Programme

Gauthier Durieux, Christophe Grojean, Jorge De Blas Mateo

FCC-PED-PhysicsGroup-Higgs@cern.ch

Why Higgs precision?

After Higgs discovery, still many open questions:

- Is the Higgs composite or fundamental?
 - Is there more than I Higgs
- Does it generate light fermion masses? What about neutrino masses? ۲
- does it couple to dark matter? ۲
- nature of the Higgs potential
 - and its relation to the EWPT

	Model	$b\overline{b}$	$c\overline{c}$	gg	WW	au au
1	MSSM [40]	+4.8	-0.8	- 0.8	-0.2	+0.4
2	Type II 2HD $[42]$	+10.1	-0.2	-0.2	0.0	+9.8
3	Type X 2HD $[42]$	-0.2	-0.2	-0.2	0.0	+7.8
4	Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2
5	Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4
6	Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0
7	Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8
8	Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5
9	Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5

Need to go beyond the LHC precision measurements:

model independence, Higgs width light couplings (charm, muon) invisible decays

-7.8

-3.5

-1.0

-3.5

-1.0 -1.5

-1.5

-1.5

-3.5

self-coupling(s)

2

4

-1

0

BSM Higgs

κλ

FCC-ee Higgs couplings (part II)

WW fusion added value

- vvH \rightarrow vvbb ~ $g_{VV}^2 g_b^2 / \Gamma_H$
 - vvbb / (ZH(bb) ZH(WW) ~ g_Z^4 / $\Gamma_H = R$
 - $\Gamma_{\rm H}$ precision at 1%
- Then do vvH \rightarrow vvWW ~ gw⁴ / $\Gamma_{\rm H}$
 - R / vvWW ~ g_W^4 / g_Z^4
 - gw precision to few permil

Running at the top does not simply add statistics it exploits complementary production mode to improve constraints

BR expected precision with 2 IPs

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu \bar{\nu}$ H	ΗZ	$\nu \bar{\nu}$ H
$\rm H \rightarrow any$	± 0.5		± 0.9	
$\mathrm{H} \rightarrow \mathrm{b}\bar{\mathrm{b}}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
${\rm H} \rightarrow {\rm W}^+ {\rm W}^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
${\rm H} \to \tau \tau$	± 0.9		± 1.8	± 8
$H \to \gamma \gamma$	± 9.0		± 18	± 22
$H \to \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invis}.$	< 0.3		< 0.6	

For 4 IPs, expect: x 1.7 luminosity / statistics x 1.3 in expected precision

Abundant statistics and high precision for: bb/cc/gg/WW Limited for:

• rare decays $\mu\mu$, $\gamma\gamma$, $Z\gamma$

• HH

e+e-vspp

pp collisions

- Proton is compound object
- → Initial state not known event-by-event
- \rightarrow Limits achievable precision

High rates of QCD backgrounds

- → Complex triggering schemes
- \rightarrow High levels of radiation

High cross-sections for colored-states

High-energy **circular** pp colliders feasible. R&D on high field magnets needed.

FCC-ee run plan

No longitudinal polarization.

For 4 IPs x 1.7 luminosity / statistics

Detector designs

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Паскег	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

- Consolidated option based on the detector design developed for CLIC
 - All silicon vertex detector and tracker
 - □ 3D-imaging highly-granular calorimeter system
 - Coil outside calorimeter system
- Proven concept, understood performance

A third concept based on highly granular LAr being proposed as well ...

New, innovative, possibly more cost-effective design

- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system