6th FCC Physics Workshop

January 23, 2023

Higgs coupling fits

Funded by: FEDER/Junta d

Jorge de Blas

University of Granada & CERN

Based on the Snowmass reports: arXiv: 2206.08326 [hep-ph] (SMEFT fits) arXiv: 2209.07510 [hep-ph] (Higgs physics)

Funded by: FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Project P18-FRJ-3735

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

✓ ...but also reminds us of the limitations of the Standard Model...

- How do we understand the mechanism of EWSB?
- Hierarchy problem: Why $M_h \ll M_P$?

Jorge de Blesv stat

Univ. of Granada / CERN

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

✓ ...but also reminds us of the limitations of the Standard Model...

- How do we understand the mechanism of EWSB?
- Hierarchy problem: Why $M_h \ll M_P$?

$$\Rightarrow \text{BSM:} \quad \Delta M_h^2 = \cdots \underbrace{\text{SM}}_{\text{Min}} + \cdots \underbrace{\text{New}}_{\text{New}} \sim 0$$
Higgs couplings fits

anuary 23, 2023

Now Physics

مدو

• ...and is connected to many interesting/relevant questions in HEP:

BSM scenarios dealing with these questions tend to:

- **1.** Introduce new particles in the scalar sector \rightarrow Direct searches
- 2. Introduce modifications of the Higgs properties → Indirect tests of new physics

The LHC is the only current experiment with direct access to both ways of testing the Higgs sector...

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

• ...and is connected to many interesting/relevant questions in HEP:

BSM scenarios dealing with these questions tend to:

1. Introduce new particles in the scalar sector → Direct searches

2. Introduce modifications of the Higgs properties → Indirect tests of new physics

The LHC is the only current experiment with direct access to both ways of testing the Higgs sector...

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

 Higgs couplings modifications can tell us about BSM, but the O(10%) precision at the LHC gives limited information:

Higgs couplings also provide information about Naturalness

Higgs coupling precision at Future Colliders

• **ESU2020:** The starting point for the Snowmass SMEFT studies

- Special emphasis on the Higgs sector and sensitivity to BSM deformations of Higgs couplings
- Expressed in terms of "effective couplings":

$$g_{HX}^{\text{eff}\ 2} \equiv \frac{\Gamma_{H \to X}}{\Gamma_{H \to X}^{\text{SM}}}. \qquad \Gamma_{Z \to e^+e^-} = \frac{\alpha M_Z}{6\sin^2 \theta_w \cos^2 \theta_w} (|g_{Zee,L}^{\text{eff}}|^2 + |g_{Zee,R}^{\text{eff}}|^2), \qquad A_e = \frac{|g_{Zee,L}^{\text{eff}}|^2 - |g_{Zee,R}^{\text{eff}}|^2}{|g_{Zee,L}^{\text{eff}}|^2 + |g_{Zee,R}^{\text{eff}}|^2}$$

Jorge de Blas Univ. of Granada / CERN European Strate

• The philosophy of Effective Field Theories:

• **SMEFT:** SM particles and symmetries at low energies, with <u>the Higgs scalar in an</u> <u>SU(2)_L doublet</u> + mass gap with new physics (entering at scale Λ , NP decoupled for $\Lambda \rightarrow \infty$)

$$\mathcal{L}_{\mathrm{UV}}(?) \longrightarrow_{E \ll \Lambda} \mathcal{L}_{\mathrm{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_{d} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \cdots$$
 $\mathcal{L}_{d} = \sum_{i} C_{i}^{d} \mathcal{O}_{i} \qquad [\mathcal{O}_{i}] = d \xrightarrow{\mathsf{Observable}} \left(\frac{q}{\Lambda}\right)^{d-4}$
 $q = v, E < \Lambda$

• The philosophy of Effective Field Theories:

• SMEFT: SM particles and symmetries at low energies, with <u>the Higgs scalar in an</u> $\frac{SU(2)_{L} \text{ doublet}}{\text{for } \Lambda \to \infty} + \max_{E \ll \Lambda} \text{ gap with new physics (entering at scale } \Lambda, \text{NP decoupled}$ $for \Lambda \to \infty)$ $\mathcal{L}_{UV}(?) \longrightarrow \mathcal{L}_{Eff} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_{d} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \cdots$ $\mathcal{L}_{d} = \sum_{i} C_{i}^{d} \mathcal{O}_{i} \qquad [\mathcal{O}_{i}] = d \longrightarrow_{Observable} \left(\frac{q}{\Lambda}\right)^{d-4}$

Effects $q = v, E < \Lambda$

<u>Model-independent within assumptions</u> General but does not necessarily capture all possible interesting new physics scenarios

• The philosophy of Effective Field Theories:

• **SMEFT:** SM particles and symmetries at low energies, with <u>the Higgs scalar in an</u> <u>SU(2)_L doublet</u> + mass gap with new physics (entering at scale Λ , NP decoupled for $\Lambda \rightarrow \infty$) $\mathcal{L}_{UV}(?) \longrightarrow \mathcal{L}_{Eff} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_{d} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \cdots$ $\mathcal{L}_{d} = \sum_{i} C_{i}^{d} \mathcal{O}_{i} \qquad [\mathcal{O}_{i}] = d \longrightarrow \left(\frac{q}{\Lambda}\right)^{d-4}$ <u>Effects</u> $q = v, E < \Lambda$

Leading Order (LO) Beyond the SM effects (assuming B & L)

 \Rightarrow Dim-6 SMEFT: 2499 operators

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

- Many EFT operators entering in Higgs processes at LO (tree level and $O(1/\Lambda^2)$) "Model-independent" only when including ALL contributing operators
- But SMEFT automatically incorporates correlations between Higgs and other processes imposed by gauge invariance + linearly realised EW symmetry

Study the different sectors globally (i.e. including all operators)

⇒ Use Global fit (i.e. EW/Higgs/Top/Flavor) to constraint all directions

 In what follows I describe the results of the global SMEFT studies performed for the Snowmass, focusing on the Higgs couplings

Snowmass: Summary of collider scenarios considered in the SMEFT studies

See Backup slides for details on the EW/Higgs inputs used from each collider project

Machine	Pol. (e^{-}, e^{+})	Energy	Luminosity
HL-LHC	Unpolarised	14 TeV	3 ab^{-1}
		$250 { m GeV}$	2 ab^{-1}
ПC	$(\mp 80\%, \pm 30\%)$	$350~{\rm GeV}$	0.2 ab^{-1}
ILU		$500~{\rm GeV}$	4 ab^{-1}
	$(\mp 80\%, \pm 20\%)$	$1 { m TeV}$	8 ab^{-1}
		$380 { m GeV}$	1 ab^{-1}
CLIC	$(\pm 80\%, 0\%)$	$1.5 { m TeV}$	2.5 ab^{-1}
		$3 { m TeV}$	5 ab^{-1}
		Z-pole	150 ab^{-1}
		$2m_W$	10 ab^{-1}
FCC-ee	Unpolarised	$240~{\rm GeV}$	5 ab^{-1}
		$350~{\rm GeV}$	0.2 ab^{-1}
		$365~{\rm GeV}$	$1.5 {\rm ~ab^{-1}}$
		Z-pole	100 ab^{-1}
		$2m_W$	6 ab^{-1}
CEPC	Unpolarised	$240~{\rm GeV}$	20 ab^{-1}
		$350~{\rm GeV}$	0.2 ab^{-1}
		$360~{\rm GeV}$	1 ab^{-1}
		$125 \mathrm{GeV}$	0.02 ab^{-1}
MuC	Unpolarised	$3 { m TeV}$	3 ab^{-1}
		$10 { m TeV}$	$10 {\rm ~ab^{-1}}$

Snowmass 2021

• **ESU2020:** The starting point for the Snowmass SMEFT studies

Inputs of SMEFT fits		Higgs	diBoson (WW,WZ)	EWPO (Z pole, m _w ,)	Тор
Rates (signal strength) $\mu \equiv rac{\sigma \cdot \mathrm{BR}}{\sigma^{\mathrm{SM}} \cdot \mathrm{BR}^{\mathrm{SM}}}$ (Inclusive) cross section	HL-LHC	Yes (µ)	LEP2 (aTGC dom.)	LEP/SLD	No
$\sigma_{ZH}\equiv\sigma(e^+e^- ightarrow ZH)$ Only possible at lepton colliders	FCC-ee	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom.)	Yes	Yes (365 GeV, Ztt)
$\frac{a \text{TGC}}{\delta g_{1z}, \delta \kappa_{\gamma}, \lambda_{z}}$	ILC	Yes (µ, σ _{ZH}) (Complete with HL-LHC)	Yes (HE limit)	Yes (Rad. Return, Giga-Z)	Yes (500 GeV, Ztt)
$M_Z, \ \Gamma_Z, \ \Gamma_{Z \to f}, \ A_{FB,LR}^{\prime}, \ \dots$ $M_W, \ \Gamma_W, \ \Gamma_{W \to f}$ $\overline{Z \text{ physics via Z-pole:}}$	CEPC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom)	Yes	No
$\sqrt{s} = M_Z: e^+e^- o Z o X$ or Rad. Return: $\sqrt{s} > M_Z: e^+e^- o \gamma Z o \gamma X$	CLIC	Yes (μ, σ _{ZH})	Yes (Full EFT parameterization)	Yes (Rad. Return, Giga-Z)	Yes

• **Snowmass:** Updated for the SMEFT studies

Inputs of SMEFT fits		Higgs	diBoson (WW,WZ)	EWPO (Z pole, m _w , …)	Тор
Rates (signal strength) $\mu \equiv \frac{\sigma \cdot \text{BR}}{\sigma^{\text{SM}} \cdot \text{BR}^{\text{SM}}}$	HL-LHC	Yes (µ)	HL-LHC Full EFT param.	LEP/SLD	Yes
(Inclusive) cross section $\sigma_{ZH}\equiv\sigma(e^+e^- ightarrow ZH)$ Only possible at	FCC-ee	Yes (μ , σ_{ZH}) (Complete with HL-LHC)	Full EFT param.	Updated Yes	Yes (365 GeV, Ztt)
$\frac{a \text{TGC}}{\delta q_{1z}, \delta \kappa_{\gamma}, \lambda_{z}}$	ILC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Full EFT param.	Updated Yes (Rad. Return, Giga-Z)	Yes (500 GeV, Ztt)
$\frac{\underline{EWPO}}{M_Z, \ \Gamma_Z, \ \Gamma_{Z \to f}, \ A^f_{FB,LR}, \ \dots}$	CEPC	<mark>Updated</mark> Yes (µ, σ _{ZH}) (Complete with HL-LHC)	Full EFT param.	Updated Yes	No
$ \frac{M_W, \ \Gamma_W, \ \Gamma_{W \to f}}{\text{Z physics via Z-pole:}} $	CLIC	Yes (μ, σ _{ZH})	Full EFT param.	Yes (Rad. Return, Giga-Z)	Yes
$\sqrt{s} = M_Z: e^+e^- \rightarrow Z \rightarrow X$ or Rad. Return: $\sqrt{s} > M_Z: e^+e^- \rightarrow \gamma Z \rightarrow \gamma X$	Muon Colliders	Yes (μ) 125 GeV/3 & 10 TeV	Full EFT param.	No. From LEP/SLD	No

• **Snowmass:** Updated for the SMEFT studies

Univ. of Granada / CERN

Higgs interactions

precision reach on effective couplings from SMEFT global fit

Effective
Higgs couplings
$$g_{HX}^{\text{eff 2}} \equiv \frac{\Gamma_{H \to X}}{\Gamma_{H \to X}^{\text{SM}}}.$$

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

arXiv: 2206.08326 [hep-ph]

20

Higgs interactions

precision reach on effective couplings from SMEFT global fit

Higgs interactions

precision reach on effective couplings from SMEFT global fit

Univ. of Granada / CERN

Higgs interactions

Jorge de Blas Univ. of Granada / CERN **New:** scenario

with the H width as

a free parameter

Higgs interactions

Jorge de Blas Univ. of Granada / CERN

ulin

Higgs interactions

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

Higgs interactions

precision reach on effective couplings from SMEFT global fit

$$\begin{array}{ll} \textbf{Effective} \\ \textbf{Higgs couplings} \end{array} \quad g_{HX}^{\text{eff 2}} \equiv \frac{\Gamma_{H \to X}}{\Gamma_{H \to X}^{\text{SM}}}. \end{array}$$

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

Higgs interactions: adding FCC-eh, FCC-hh

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

Higgs interactions: adding FCC-eh, FCC-hh

ing

precision reach on effective couplings from SMEFT global fit

Jorge de Blas Univ. of Granada / CERN

Effective

Higgs couplings

Interplay EW/Higgs at future colliders

Impact of future EWPO in Higgs/aTGC couplings

SM_{Param}.: Consider only SM parametric uncertainties (Default) **SM**_{Full(Future)}: Consider SM parametric uncertainties + projected future TH calculations **SM**_{Full(Current)}: Consider SM parametric uncertainties + current TH calculations

			Th _{Intr}	$\mathrm{Th}_{\mathrm{Par}}^{m_q}$	$\mathrm{Th}_{\mathrm{Par}}^{\alpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$	Th _{Intr}	$\mathrm{Th}_{\mathrm{Par}}^{m_q}$	$\mathrm{Th}_{\mathrm{Par}}^{lpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$
<u>Current</u>	<u>Future</u>	$H \to b \overline{b}$	< 0.4	1.4	0.4	_	0.2	0.6	< 0.1	_
$e^+e^- \rightarrow ZH$	<0.20/ Full 2 loon*	$H \to \tau^+ \tau^-$	< 0.3	—	—	_	< 0.1	—	—	—
O(1%)		$H \to c \bar{c}$	< 0.4	4.0	0.4	_	0.2	1.0	< 0.1	_
		$H \to \mu^+ \mu^-$	< 0.3	_	_	_	< 0.1	_	_	—
$e^+e^- \to \overline{\nu}\nu H$	<1% Partial 2 loop	$H \to W^+ W^-$	0.5	_	_	2.6	0.3	_	_	0.1
		$H \to gg$	3.2	< 0.2	3.7	_	1.0	_	0.5	—
		$H \to ZZ$	0.5	_	_	3.0	0.3	_	_	0.1
		$H\to\gamma\gamma$	< 1.0	< 0.2	—	—	< 1.0	—	—	—
*See A. Freitas, Q. Song, arXiv: 22	209.07612,	$H \to Z\gamma$	5.0	—	—	2.1	1.0	—	—	0.1
A. Chen et al., arXiv: 2209.14953 results	for recent	$\Delta m_b =$	13 MeV, Δ	$m_c = 7 \text{ M}$	[eV, Δm_t =	= 50 MeV,	$\Delta \alpha_s = 0.0$	$0002 \Delta m$	$_{H} = 10 \text{ Me}$	eV

Produ	<u>iction</u>	Decay								
					cay current unc. $\delta\Gamma$ [%] future unc. $\delta\Gamma$ [%]					
			Th _{Intr}	$\operatorname{Th}_{\operatorname{Par}}^{m_q}$	$\mathrm{Th}_{\mathrm{Par}}^{lpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$	Th _{Intr}	$\mathrm{Th}_{\mathrm{Par}}^{m_q}$	$\mathrm{Th}_{\mathrm{Par}}^{\alpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$
<u>Current</u>	<u>Future</u>	$H \to b \overline{b}$	< 0.4	1.4	0.4	_	0.2	0.6	< 0.1	_
$e^+e^- \rightarrow ZH$	<0.20/ Full 2 loon*	$H \to \tau^+ \tau^-$	< 0.3	—	—	—	< 0.1	—	—	_
O(1%)		$H \to c \bar{c}$	< 0.4	4.0	0.4	_	0.2	1.0	< 0.1	_
		$H \to \mu^+ \mu^-$	< 0.3	_	_	—	< 0.1	_	—	_
$e^+e^- \to \overline{\nu}\nu H$	<1% Partial 2 loop	$H \to W^+ W^-$	0.5	_	_	2.6	0.3	_	_	0.1
		$H \to gg$	3.2	< 0.2	3.7	_	1.0	_	0.5	_
		$H \to ZZ$	0.5	—	—	3.0	0.3	—	—	0.1
		$H\to\gamma\gamma$	< 1.0	< 0.2	—	—	< 1.0	—	—	—
*See A. Freitas, Q. Song, arXiv: 2209.07612,		$H \to Z \gamma$	5.0	—	—	2.1	1.0	_	_	0.1
X. Chen et al., arXiv: 2209.14953 results	for recent	$\Delta m_b =$	13 MeV, Δ	$m_c = 7 N$	IeV, Δm_t	= 50 MeV,	$\Delta \alpha_s = 0.0$	$0002 \Delta m$	$_H = 10$ Me	V

• The Higgs self coupling κ_{λ}

$$V(\phi) = -\mu_{\phi}^2 \left|\phi\right|^2 + \lambda_{\phi} \left|\phi\right|^4 \longrightarrow V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_3 v h^3 + \frac{1}{4}\lambda_4 h^4$$
 $\kappa_{\lambda} \equiv rac{\lambda_3}{\lambda_3^{\mathrm{SM}}}$
 $\lambda_3^{\mathrm{SM}} = \lambda_4^{\mathrm{SM}} = \lambda_{\phi} = rac{G_{\mu}m_h^2}{\sqrt{2}} \approx 0.129$

• Why are Higgs self-interactions important?

- ✓ It characterises the structure of the Higgs potential
 - \Rightarrow Does EWSB follow from a Ginzburg- Landau ϕ^4 potential?

✓ Test the validity of the SM. Not SM-like? \Rightarrow Information about BSM physics

- Sizable deviations expected, e.g., in models of composite Higgs or models with Higgs portal interactions
- ✓ Control the properties of the electroweak phase transition (EWPT)
 - (Electroweak) Baryogenesis?
 - Models predicting strong 1st order transition $\rightarrow O(1)$ deviations
- A few operators contribute to κ_{λ} in the SMEFT but only one does it exclusively:

$$\Delta \mathcal{L}_{\text{SMEFT}}^{d=6} = \frac{C_{\phi}}{\Lambda^2} (\phi^{\dagger} \phi)^3,$$

$$\delta \kappa_{\lambda} = -2 \frac{C_{\phi} v^4}{m_h^2 \Lambda^2}$$

Jorge de Blas Univ. of Granada / CERN

 $\frac{1}{2v} \times$

Higgs couplings fits January 23, 2023

Higgs self coupling precision

• Extending the SMEFT fit with the operator O_{ϕ} and including the NLO effects from the **Higgs self coupling** in **single-Higgs** processes

• we obtain an indirect determination of the precision for κ_λ from single-Higgs fits

 CAREFUL: This indirect determination may not be "robust" if other poorly constrained operators correct the process at NLO. All operators entering at NL(

Summary and Conclusions

Summary and Conclusions

• Higgs coupling precision is key to learn from BSM physics, e.g. CH models

- Starting from the ESU2020 studies, for the Snowmass process we updated & extended the projections for sensitivity to BSM deformations at future colliders in the SMEFT formalism
- Focusing on the Higgs sector @ FCC:
 - ✓ FCC-ee: Permille precision is achievable for BSM deviations in the main H couplings (mild dependence on precision of TH calculations and SM inputs)
 - ✓ FCC-ee+eh+hh → subpercent precision across all single H couplings
 - ✓ Higgs selfcoupling: FCC-ee~30% → FCC-hh ~5%

Summary and Conclusions

- At the moment, these Higgs coupling fits mostly focus on the main Higgs interactions and do not fully reflect the potential for other types of measurements possible at FCC-ee and that were not discussed here:
 - ✓ Electron Yukawa: Running @ 125 GeV: ~3 times SM
 - ✓ Flavor violating couplings?
 - ✓ CP-violation
- Finally, Higgs physics is only part of the physics program of the FCC...
 - ✓ ...and Higgs interpretations depends on the precision of other EW measurements (at the Z pole or above) → important role in optimizing the precision of measurements of the Higgs sector
 - ✓ In particular, precision on aTGC from WW measurements is relevant for SMEFT Higgs analysis, but detailed EXP future collider study including systematics, etc... still needs to be done

• **LO SMEFT Lagrangian** (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

Warsaw basis operators (Neglecting flavour)

Operator	Notation	Operator	Notation	Operator	Notation	Operator	Notation
$(\overline{l_L}\gamma_\mu l_L) \ (\overline{l_L}\gamma^\mu l_L)$	$\mathcal{O}_{n}^{(1)}$			$\left(\phi^{\dagger}\phi ight)\square\left(\phi^{\dagger}\phi ight)$	$\mathcal{O}_{\phi\square}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	\mathcal{O}_{ϕ}
$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right)$	$\mathcal{O}_{qq}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right)$	$\mathcal{O}_{qq}^{(8)}$	$\overline{\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi\right) \left(\overline{l_L} \gamma^{\mu} l_L\right)}$	$\mathcal{O}_{\phi l}^{(1)}$	$\overline{\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}^{a}} \phi\right) \left(\overline{l_{L}} \gamma^{\mu} \sigma_{a} l_{L}\right)}$	$\mathcal{O}_{\phi l}^{(3)}$
$\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right)$	$\mathcal{O}_{lq}^{(1)}$	$\left(\overline{l_L}\gamma_\mu\sigma_a l_L\right)\left(\overline{q_L}\gamma^\mu\sigma_a q_L\right)$	$\mathcal{O}_{lq}^{(3)}$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right)$	$\mathcal{O}_{\phi e}^{(1)}$		
$\left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{ee}			$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi ight)\left(\overline{q_{L}}\gamma^{\mu}q_{L} ight)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi ight) \left(\overline{q_L} \gamma^{\mu} \sigma_a q_L ight)$	$\mathcal{O}_{\phi q}^{(3)}$
$\left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)$	$\mathcal{O}_{uu}^{(1)}$	$\left(\overline{d_R}\gamma_\mu d_R\right)\left(\overline{d_R}\gamma^\mu d_R\right)$	$\mathcal{O}_{dd}^{(1)}$	$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu}\phi\right) \left(\overline{u_{R}}\gamma^{\mu}u_{R}\right)$	$\mathcal{O}_{\phi u}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi\right) \left(\overline{d_R} \gamma^{\mu} d_R\right)$	$\mathcal{O}_{\phi d}^{(1)}$
$(\overline{u_R}\gamma_\mu u_R) \left(d_R \gamma^\mu d_R \right)$	$\mathcal{O}_{ud}^{(1)}$	$(\overline{u_R}\gamma_{\mu}T_A u_R) \left(\underline{d_R}\gamma^{\mu}T_A d_R\right)$	$\mathcal{O}_{ud}^{(8)}$	$\left(\phi^{T}i\sigma_{2}iD_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}d_{R}\right)$	$\mathcal{O}_{\phi u d}$		
$(e_R\gamma_\mu e_R)(u_R\gamma^\mu u_R)$	\mathcal{O}_{eu}	$(e_R\gamma_\mu e_R) \left(d_R\gamma^\mu d_R \right)$	\mathcal{O}_{ed}	$\left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\phi B_{\mu\nu}$	\mathcal{O}_{eB}	$\left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\sigma^a\phi W^a_{\mu\nu}$	\mathcal{O}_{eW}
$\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{le}	$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{qe}	$(q_L \sigma^{\mu\nu} u_R) \phi B_{\mu\nu}$ $(\overline{q_L} \sigma^{\mu\nu} d_R) \phi B_{\mu\nu}$	$\mathcal{O}_{uB} \ \mathcal{O}_{dB}$	$(q_L \sigma^{\mu\nu} u_R) \sigma^a \phi W^a_{\mu\nu}$ $(\overline{q_L} \sigma^{\mu\nu} d_R) \sigma^a \phi W^a_{\mu\nu}$	$\mathcal{O}_{uW} \ \mathcal{O}_{dW}$
$ (l_L \gamma_\mu l_L) (\overline{u_R} \gamma^\mu u_R) $	\mathcal{O}_{lu}	$(l_L \gamma_\mu l_L) (d_R \gamma^\mu d_R)$	\mathcal{O}_{ld}	$\left(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R\right)\widetilde{\phi} G^A_{\mu\nu}$	\mathcal{O}_{uG}	$\left(\overline{q_L}\sigma^{\mu u}\lambda^A d_R ight)\phi G^A_{\mu u}$	\mathcal{O}_{dG}
$(q_L \gamma_\mu q_L) (u_R \gamma^\mu u_R)$	$\mathcal{O}_{qu}^{(-)} \ \mathcal{O}^{(1)}$	$(q_L \gamma_\mu T_A q_L) (u_R \gamma^\mu T_A u_R)$ $(\overline{a_L} \gamma_\mu T_A q_L) (\overline{d_L} \gamma^\mu T_A u_R)$	$\mathcal{O}_{qu}^{(8)}$	$\left(\phi^{\dagger}\phi\right)\left(\overline{l_{L}}\phie_{R}\right)$	$\mathcal{O}_{e\phi}$		
$(q_L\gamma_\mu q_L) (a_R\gamma^\mu a_R)$ $(\overline{l_L}e_R) (\overline{d_R}a_L)$	\mathcal{O}_{qd} \mathcal{O}_{lada}	$(q_L\gamma_\mu I_A q_L) (a_R\gamma^\mu I_A a_R)$	\mathcal{O}_{qd}	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}} ilde{\phi}u_{R} ight)$	$\mathcal{O}_{u\phi}$	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\phid_{R} ight)$	$\mathcal{O}_{d\phi}$
			(8)	$\overline{\left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi\right)}$	$\mathcal{O}_{\phi D}$	~	
$(\overline{q_L}u_R) i\sigma_2 (\overline{q_L}d_R)^{\mathrm{T}}$	$\mathcal{O}_{qud}^{(1)}$	$(\overline{q_L}T_A u_R) i\sigma_2 (\overline{q_L}T_A d_R)^{T}$	$\mathcal{O}_{qud}^{(8)}$	$\phi^{\dagger}\phi\;B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi B}$	$\phi^{\dagger}\phi B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi\widetilde{B}}$
$(l_L e_R) \imath \sigma_2 (q_L u_R)^2$	\mathcal{O}_{lequ}	$(l_L u_R) \imath \sigma_2 (q_L e_R)^2$	\mathcal{O}_{qelu}	$\phi^{\dagger}\phi^{}W^{a}_{\mu\nu}W^{a}\mu^{\nu}$ $\phi^{\dagger}\sigma^{}\phi^{}W^{a}B^{\mu\nu}$	$\mathcal{O}_{\phi W}$	$\phi^{\dagger}\phi^{}W^{a}_{\mu\nu}W^{a}\mu^{\mu\nu}$ $\phi^{\dagger}\sigma^{}\phi^{}\widetilde{W}^{a}B^{\mu\nu}$	$\mathcal{O}_{\phi \widetilde{W}}$ \mathcal{O}_{\sim}
				$\phi^{\dagger}\phi \ G^{A}_{\mu\nu}G^{A\ \mu\nu}$	$\mathcal{O}_{\phi G}$	$\phi^{\dagger}\phi^{}\widetilde{G}^{A}_{\mu u}G^{A\ \mu u}$	${\cal O}_{WB} \ {\cal O}_{\phi \widetilde{G}}$
				$\varepsilon_{abc} W^{a \ \nu}_{\mu} W^{b \ \rho}_{\nu} W^{c \ \mu}_{\rho}$	\mathcal{O}_W	$\varepsilon_{abc} \widetilde{W}^{a \nu}_{\!\!\!\mu} W^{b \rho}_{\!\!\!\nu} W^{c \mu}_{\rho}$	$\mathcal{O}_{\widetilde{W}}$
				$f_{ABC} G^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho}$	\mathcal{O}_G	$f_{ABC} G^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho}$	$\mathcal{O}_{\widetilde{G}}$

• **LO SMEFT Lagrangian** (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

Warsaw basis operators (Neglecting flavour)

Operator	Notation	Operator	Notation	Operator	Notation	Operator	Notation
$\left(\overline{l_L}\gamma_\mu l_L ight)\left(\overline{l_L}\gamma^\mu l_L ight)$	$\mathcal{O}_{ll}^{\scriptscriptstyle (1)}$			$\left(\phi^{\dagger}\phi ight)\square\left(\phi^{\dagger}\phi ight)$	$\mathcal{O}_{\phi\square}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	\mathcal{O}_{ϕ}
$(\overline{q_L}\gamma_\mu q_L) (\overline{q_L}\gamma^\mu q_L)$	$\mathcal{O}_{qq}^{(\pm)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right)$	$\mathcal{O}_{qq}^{(8)}$	$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} \phi ight) \left(\overline{l_L} \gamma^{\mu} l_L ight)$	$\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}^{a}} \phi ight) \left(\overline{l_{L}} \gamma^{\mu} \sigma_{a} l_{L} ight)$	$\mathcal{O}_{\phi l}^{(3)}$
$\left(l_L\gamma_\mu l_L\right)\left(\overline{q_L}\gamma^\mu q_L\right)$	$\mathcal{O}_{lq}^{(1)}$	$\left(l_L \gamma_\mu \sigma_a l_L ight) \left(\overline{q_L} \gamma^\mu \sigma_a q_L ight)$	$\mathcal{O}_{lq}^{(3)}$	$\left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right)$	${\cal O}_{\phi e}^{(1)}$	× ,	
$\left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{ee}	_		$\left(\phi^{\dagger}i D_{\mu}\phi\right)\left(\overline{q_{L}}\gamma^{\mu}q_{L} ight)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}\phi ight)\left(\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L} ight)$	$\mathcal{O}_{\phi q}^{(3)}$
$(\overline{u_R}\gamma_\mu u_R) (\overline{u_R}\gamma^\mu u_R)$	$\mathcal{O}_{uu}^{(1)}$	$\left(\overline{d_R}\gamma_{\mu}d_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right)$	$\mathcal{O}_{dd}^{(1)}$	$\left(\phi^{\dagger}i \overrightarrow{D}_{\mu}\phi\right)\left(\overline{u_{B}}\gamma^{\mu}u_{B}\right)$	${\cal O}_{\star i}^{(1)}$	$\left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi ight)\left(\overline{d_{R}}\gamma^{\mu}d_{R} ight)$	${\cal O}_{\phi d}^{(1)}$
$\left(\overline{u_R}\gamma_\mu u_R\right)\left(d_R\gamma^\mu d_R\right)$	$\mathcal{O}_{ud}^{(1)}$	$\left(\overline{u_R}\gamma_{\mu}T_A u_R\right)\left(d_R\gamma^{\mu}T_A d_R\right)$	$\mathcal{O}_{ud}^{(8)}$	$\left(\phi^T i \sigma_2 i D_\mu \phi\right) \left(\overline{u_R} \gamma^\mu d_R\right)$	$\mathcal{O}_{\phi ud}$		
$\left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{u_R}\gamma^{\mu}u_R ight)$	\mathcal{O}_{eu}	$\left(\overline{e_R}\gamma_\mu e_R\right)\left(d_R\gamma^\mu d_R ight)$	\mathcal{O}_{ed}	$\left(\overline{l_L}\sigma^{\mu u}e_R ight)\phiB_{\mu u}$	\mathcal{O}_{eB}	$\left(\overline{l_L}\sigma^{\mu u}e_R ight)\sigma^a\phiW^a_{\mu u}$	\mathcal{O}_{eW}
$\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{le}	$\left(\overline{q_L}\gamma_\mu q_L\right)\left(\overline{e_R}\gamma^\mu e_R ight)$	\mathcal{O}_{qe}	$(q_L \sigma^{\mu\nu} u_R) \phi B_{\mu\nu}$	\mathcal{O}_{uB}	$(q_L \sigma^{\mu\nu} u_R) \sigma^a \phi W^a_{\mu\nu}$	\mathcal{O}_{uW}
$\left(\overline{l_L}\gamma_\mu l_L\right)\left(\overline{u_R}\gamma^\mu u_R ight)$	\mathcal{O}_{lu}	$\left(\overline{l_L}\gamma_\mu l_L\right)\left(d_R\gamma^\mu d_R ight)$	\mathcal{O}_{ld}	$(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R)\phi G^A_{\mu\nu}$	\mathcal{O}_{dB}	$ \left(\overline{q_L} \sigma^{\mu\nu} \lambda^A d_R \right) \phi G^A_{\mu\nu} $	${\cal O}_{dW} \ {\cal O}_{dG}$
$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)$	$\mathcal{O}_{qu}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{u_R}\gamma^{\mu}T_Au_R\right)$	$\mathcal{O}_{qu}^{(8)}$	$(\phi^{\dagger}\phi) \; (\overline{l_L} \phi e_R)$	$\mathcal{O}_{e\phi}$		
$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(d_R\gamma^{\mu}d_R\right)$	$\mathcal{O}_{qd}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(d_R\gamma^{\mu}T_Ad_R\right)$	$\mathcal{O}_{qd}^{(0)}$	$\left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\tilde{\phi}u_{R}\right)$	$\mathcal{O}_{u\phi}$	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\phid_{R} ight)$	$\mathcal{O}_{d\phi}$
$(l_L e_R) (a_R q_L)$	\mathcal{O}_{ledq}			$(\phi^{\dagger}D_{\mu}\phi)((D^{\mu}\phi)^{\dagger}\phi)$	$\mathcal{O}_{\phi D}$		
$\left(\overline{q_L}u_R\right)i\sigma_2\left(\overline{q_L}d_R\right)^{\mathrm{T}}$	$\mathcal{O}_{qud}^{(1)}$	$\left(\overline{q_L}T_A u_R\right) i\sigma_2 \left(\overline{q_L}T_A d_R\right)^{\mathrm{T}}$	$\mathcal{O}_{qud}^{(8)}$	$\frac{\phi}{\phi} \phi D_{\mu\nu} D^{\mu\nu}$	$\mathcal{O}_{\phi B}$	$\phi^{\dagger}\phi~\widetilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi \widetilde{B}}$
$\left(\overline{l_L}e_R\right)i\sigma_2\left(\overline{q_L}u_R ight)^{\mathrm{T}}$	\mathcal{O}_{lequ}	$\left(\overline{l_L}u_R ight)i\sigma_2\left(\overline{q_L}e_R ight)^{\mathrm{T}}$	\mathcal{O}_{qelu}	$\phi^{\dagger}\phi\;W^{a}_{\mu u}W^{a\;\mu u}$	$\mathcal{O}_{\phi W}$	$\phi^{\dagger}\phi \; \widetilde{W}^{a}_{\mu u}W^{a\ \mu u}$	$\mathcal{O}_{\phi \widetilde{W}}$
				$\phi^{\dagger}\sigma_{a}\phi\;W^{a}_{\mu u}B^{\mu u}$	\mathcal{O}_{WB}	$\phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\widetilde{W}B}$
	von dim 6 on	s interfering with SM		$\phi'\phi G''_{\mu\nu}G''^{\mu\nu}$	$\mathcal{O}_{\phi G}$	$\frac{\phi'\phi \ G_{\mu\nu}G^{\mu\nu}G^{\mu\nu}}{\widetilde{W}_{a} \nu W^{b} \rho W^{c} \mu}$	$\mathcal{O}_{\phi \widetilde{G}}$
				$\varepsilon_{abc} W^{a\nu}_{\mu} W^{c\mu}_{\nu} W^{c\mu}_{\rho}$ $f_{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\mu} G^{C\mu}$	\mathcal{O}_W \mathcal{O}_G	$\varepsilon_{abc} W_{\mu}^{a\nu} W_{\nu}^{\rho\nu} W_{\rho}^{c\mu}$ $f_{ABC} \tilde{G}_{\mu}^{A\nu} G_{\mu}^{B\rho} G^{C\mu}$	$\mathcal{O}_{\widetilde{W}} \ \mathcal{O}_{\widetilde{lpha}}$
		T /// / A // /		$\mu \nu \rho$	9	$\mu \nu \rho$	G

EW diboson Higgs Top (Had. Coll., Lept. Coll.)

EWPO

SMEFT studies: ESU2020 → Snowmass

• **ESU2020:** The starting point for the Snowmass SMEFT studies

SMEFT assumptions

- SMEFT truncated at the dim 6 in the EFT expansion (Calculations performed in a modified version of the Warsaw basis)
- CP-even operators
- <u>Neglect effects from 4-fermion operators</u> other than the 4-lepton operator contributing to μ decay (and hence to G_F).
 - 4-fermion operators assumed to be constrained better in non-Higgs processes (e.g. $pp \rightarrow ff$ or $e^+e^- \rightarrow ff$ at high E)
- <u>No dipole operators</u> (Relevant for general analysis of Top processes, but are neglected in our studies)
- Two types of flavor assumptions: flavour universal (18 NP pars) and flavour diagonal (30 NP pars)

Neutral Diagonal: SMEFT_{ND} fit

-*Hff* and *Vff* (*HVff*) diagonal in the physical basis -*Vff* (*HVff*) flavour universality respected by first 2 quark families -Better for exploration of H & EW capabilities at future colliders -Cumbersome from model-building point of view to avoid FCNC

```
Parameter counting in the parameterization of LHCHXSWG-INT-2015-001
```

Higgs $\text{SMEFT}_{\text{ND}} \equiv \{\delta m, c_{gg}, \delta c_z, c_{\gamma\gamma}, c_{z\gamma}, c_{zz}, c_{z\Box}, \delta y_t, \delta y_c, \delta y_b, \delta y_{\tau}, \delta y_{\mu}, \lambda_z\}$ $+\left\{(\delta g_{L}^{Zu})_{q_{i}},(\delta g_{L}^{Zd})_{q_{i}},(\delta g_{L}^{Z\nu})_{\ell},(\delta g_{L}^{Ze})_{\ell},(\delta g_{R}^{Zu})_{q_{i}},(\delta g_{R}^{Zd})_{q_{i}},(\delta g_{R}^{Ze})_{\ell}\right\}_{q_{1}=q_{2}\neq q_{3}},\ell=e,\mu,\tau$ Vff/hVff 5 SM + 30 New Physics Parameters

Jorge de Blas Univ. of Granada / CERN

Higgs couplings fits January 23, 2023

SMEFT studies: ESU2020 → Snowmass

• Gauge invariant operators included in the EW/Higgs fit:

		Operator	Notation	Operator	Notation
	<i>X</i> ³	$\varepsilon_{abc}W^{a\nu}_{\mu}W^{b\rho}_{\nu}W^{c\mu}_{\rho}$	\mathscr{O}_W		
—	ϕ^6	$\left(\phi^{\dagger}\phi ight) ^{3}$	Ø _φ (←I	ncluded in the discussion of	the H self coupli
Class	$\phi^4 D^2$	$\left(\phi^{\dagger} \phi ight) \Box \left(\phi^{\dagger} \phi ight)$	$\mathscr{O}_{\phi\square}$	$\left(\phi^{\dagger}D_{\mu}\phi ight)\left(\left(D^{\mu}\phi ight)^{\dagger}\phi ight)$	$\mathscr{O}_{\phi D}$
	$X^2 \phi^2$	$\phi^{\dagger}\phi B_{\mu u}B^{\mu u} \phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu u}B^{\mu u}$	${\mathscr O}_{\phi B}\ {\mathscr O}_{\phi WB}$	$\phi^{\dagger}\phi W^a_{\mu u}W^{a\mu u} \phi^{\dagger}\phi G^A_{\mu u}G^{A\mu u}$	$\mathcal{O}_{\phi W}$ $\mathcal{O}_{\phi G}$
Class 2	$\psi^2 \phi^2$	$ig(\phi^{\dagger}\phiig) (ar{l}^{i}_{L}\phi e^{j}_{R}) \ ig(\phi^{\dagger}\phiig) (ar{q}^{i}_{L}\phi d^{j}_{R})$	$\left(\mathscr{O}_{e\phi} ight)_{ij} \ \left(\mathscr{O}_{d\phi} ight)_{ij}$	$\left(\phi^{\dagger}\phi ight) \left(ar{q}_{L}^{i} ilde{\phi}u_{R}^{j} ight)$	$\left(\mathscr{O}_{u\phi}\right)_{ij}$
		$(\phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\phi)(\overline{l}_{L}^{i}\gamma^{\mu}l_{L}^{j})$	$\left(\mathscr{O}_{\phi l}^{(1)}\right)_{ij}$	$(\phi^{\dagger}i \stackrel{\leftrightarrow}{D}{}^{a}_{\mu}\phi)(\overline{l}^{i}_{L}\gamma^{\mu}\sigma_{a}l^{j}_{L})$	$(\mathscr{O}_{\phi l}^{(3)})_{ij}$
Class 3	$\psi^2 \phi^2 D$	$ \begin{aligned} &(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi)(\bar{e}^{i}_{R}\gamma^{\mu}e^{j}_{R})\\ &(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi)(\bar{q}^{i}_{L}\gamma^{\mu}q^{j}_{L})\\ &(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi)(\bar{u}^{i}_{R}\gamma^{\mu}u^{j}_{R}) \end{aligned} $	$ \begin{pmatrix} \mathscr{O}_{\phi e} \end{pmatrix}_{ij} \\ (\mathscr{O}_{\phi q}^{(1)})_{ij} \\ (\mathscr{O}_{\phi u})_{ij} \end{pmatrix} $	$\begin{array}{c} (\phi^{\dagger}i\overset{\leftrightarrow}{D}{}^{a}_{\mu}\phi)(\bar{q}^{i}_{L}\gamma^{\mu}\sigma_{a}q^{j}_{L}) \\ (\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi)(\bar{d}^{i}_{R}\gamma^{\mu}d^{j}_{R}) \end{array}$	$(\mathscr{O}_{\phi q}^{(3)})_{ij} \ \left(\mathscr{O}_{\phi d} ight)_{ij}$

Electroweak precision observables

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	17.8*	17.8*		3.8 (1.2)	17.8*	
$\Delta m_W \; ({\rm MeV})$	12*	0.5(2.4)		0.25~(0.3)	0.35~(0.3)	
$\Delta m_Z \; ({\rm MeV})$	2.1*	0.7(0.2)	0.2	0.004~(0.1)	0.005~(0.1)	2.1*
$\Delta m_H \ ({ m MeV})$	170*	14		2.5(2)	5.9	78
$\Delta\Gamma_W ({\rm MeV})$	42*	2		$1.2 \ (0.3)$	1.8 (0.9)	
$\Delta\Gamma_Z \ ({\rm MeV})$	2.3*	1.5(0.2)	0.12	$0.004 \ (0.025)$	$0.005 \ (0.025)$	2.3^{*}
$\Delta A_e \; (\times 10^5)$	190*	14(4.5)	1.5 (8)	0.7 (2)	1.5	64
$\Delta A_{\mu} (\times 10^5)$	1500*	82 (4.5)	3(8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86 (4.5)	3(8)	0.5 (20)	1.2 (6.9)	570
$\Delta A_b \; (\times 10^5)$	2000*	53(35)	9(50)	2.4(21)	3(21)	380
$\Delta A_c \; (\times 10^5)$	2700*	140 (25)	20(37)	20 (15)	6 (30)	200
$\Delta \sigma_{\rm had}^0 ({\rm pb})$	37*			0.035(4)	0.05 (2)	37*
$\delta R_e \; (\times 10^3)$	2.4*	0.5(1.0)	$0.2 \ (0.5)$	0.004~(0.3)	0.003~(0.2)	2.7
$\delta R_{\mu} (imes 10^3)$	1.6*	0.5(1.0)	0.2 (0.2)	$0.003\ (0.05)$	0.003~(0.1)	2.7
$\delta R_{\tau} (\times 10^3)$	2.2*	0.6(1.0)	0.2(0.4)	0.003~(0.1)	0.003~(0.1)	6
$\delta R_b \; (\times 10^3)$	3.0*	0.4(1.0)	0.04(0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
$\delta R_c(\times 10^3)$	17*	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6

Higgs observables: HL-LHC

HL-LHC	3 ab	o^{-1} ATI	LAS+C	CMS	
Prod.	ggH	VBF	WH	ZH	ttH
σ	-	-	-	-	-
$\sigma \times BR_{bb}$	19.1	-	8.3	4.6	10.7
$\sigma \times BR_{cc}$	-	-	-	-	-
$\sigma \times BR_{gg}$	-	-	-	-	-
$\sigma \times BR_{ZZ}$	2.5	9.5	32.1	58.3	15.2
$\sigma \times BR_{WW}$	2.5	5.5	9.9	12.8	6.6
$\sigma \times BR_{\tau\tau}$	4.5	3.9	_	_	10.2
$\sigma \times BR_{\gamma\gamma}$	2.5	7.9	9.9	13.2	5.9
$\sigma \times BR_{\gamma Z}$	24.4	51.2	-	-	-
$\sigma \times BR_{\mu\mu}$	11.1	30.7	-	_	_
$\sigma \times BR_{inv.}$	-	2.5	-	-	-
Δm_H	$10-20 { m MeV}$	-	-	-	_

• Higgs observables: Circular *e*⁺*e*⁻ Colliders (FCCee/CEPC)

	FCCee24	$0 5 a b^{-1}$	CEPO	$C240 \ 20 \text{ab}^{-1}$		$1.5 \text{ ab}^{-1} \text{ F}$	CC-ee365	1.0 ab^{-1} (CEPC360
Prod.	ZH	ννΗ	ZH	$\nu\nu H$	Prod.	ZH	ννΗ	ZH	ννΗ
σ	0.5(0.537)	-	0.26	-	σ	0.9(0.84)	-	1.4(1.02)	-
$\sigma \times BR_{bb}$	0.3(0.380)	3.1(2.78)	0.14	1.59	$\sigma \times BR_{bb}$	0.5(0.71)	0.9(1.14)	0.90(0.86)	1.1(1.39)
$\sigma \times BR_{cc}$	2.2(2.08)	_	2.02	-	$\sigma \times BR_{cc}$	6.5(5.0)	10(11.9)	8.8(6.1)	16(14.5)
$\sigma \times BR_{aa}$	1.9(1.75)	_	0.81	-	$\sigma \times BR_{gg}$	3.5(3.8)	4.5(4.8)	3.4(4.7)	4.5(5.9)
$\sigma \times BR_{ZZ}$	4.4(4.49)	_	4.17	-	$\sigma \times BR_{ZZ}$	12(11.4)	10(12.5)	20(13.9)	21(15.3)
$\sigma \times BR_{WW}$	1.2(1.16)	_	0.53	-	$\sigma \times BR_{WW}$	2.6(2.55)	(3.6)	2.8(3.12)	4.4(4.4)
$\sigma \times BR_{\sigma\sigma}$	0.9(0.822)	_	0.42	_	$\sigma \times BR_{\tau\tau}$	1.8(1.83)	8(10)	2.1(2.24)	4.2(12.2)
$\sigma \times BR$	9(8.47)	_	3.02	_	$\sigma \times BR_{\gamma\gamma}$	18(17.7)	22(28.1)	11(21.7)	16(34.4)
$\sigma \times BR_{\gamma\gamma}$	(17^*)		8.5		$\sigma \times BR_{\mu\mu}$	40(40)	(100)	41(48)	57(123)
$0 \times DR_{\gamma Z}$	(11)	_	$\begin{array}{c} 0.0\\ c \ 2c\end{array}$	_	$\sigma \times BR_{inv.}$	0.60(0.42)	-	(0.49)	-
$\sigma \times BR_{\mu\mu}$	19(17.9)	-	0.30	-					
$\sigma \times BR_{inv.}$	0.3(0.226)	-	0.07	-					

• Higgs observables: Linear *e*⁺*e*⁻ Colliders (ILC)

ILC250	0.9ab ⁻	1 (-0.8,+0.3)	0.9ab ⁻	(+0.8, -0.3)	ILC350	0.135	ab^{-1} (-0.8,+0.3)	0.045	ab^{-1} (+0.8,-0.3)
Prod.	ZH	$\nu\nu H$	ZH	$\nu\nu H$	Prod.	ZH	$\nu\nu H$	ZH	$\nu \nu H$
σ	1.07	-	1.07	-	σ	2.46	_	4.3	_
$\sigma \times BR_{bb}$	0.714	4.27	0.714	17.4	$\sigma \times BR_{bb}$	2.05	2.46	3.5	17.7
$\sigma \times BR_{cc}$	4.38	-	4.38	-	$\sigma \times BR_{cc}$	15	25.9	25.9	186
$\sigma \times BR_{gg}$	3.69	-	3.69	-	$\sigma \times BB$	11 /	10.5	10.8	75
$\sigma \times BR_{ZZ}$	9.49	-	9.49	-	$0 \times DR_{gg}$	11.4	10.5	19.0	10
$\sigma \times BR_{WW}$	2.43	-	2.43	-	$\sigma \times BR_{ZZ}$	34	27.2	59	191
$\sigma \times BR_{\tau\tau}$	1.7	-	1.7	-	$\sigma \times BR_{WW}$	7.6	7.8	13.2	57
$\sigma \times BR_{\gamma\gamma}$	17.9	-	17.9	-	$\sigma \times BR_{\tau\tau}$	5.5	21.8	9.4	156
$\sigma \times BR_{\gamma Z}$	63	-	59	-	$\sigma \times BR_{\gamma\gamma}$	53	61	92	424
$\sigma \times BR_{\mu\mu}$	37.9	-	37.9	-	$\sigma \times BR_{\mu\mu}$	118	218	205	1580
$\sigma \times BR_{inv.}$	0.336	-	0.277	_	$\sigma \times BR_{inv.}$	1.15	_	1.83	_

ILC500	1.6 al	p^{-1} (-0.8,+0.3)	1.6 al	b^{-1} (+0.8,-0.3)
Prod.	ZH	$\nu\nu H$	ZH	ννΗ
σ	1.67	-	1.67	-
$\sigma imes BR_{bb}$	1.01	0.42	1.01	1.52
$\sigma \times BR_{cc}$	7.1	3.48	7.1	14.2
$\sigma \times BR_{gg}$	5.9	2.3	5.9	9.5
$\sigma \times BR_{ZZ}$	13.8	4.8	13.8	19
$\sigma \times BR_{WW}$	3.1	1.36	3.1	5.5
$\sigma \times BR_{\tau\tau}$	2.42	3.9	2.42	15.8
$\sigma \times BR_{\gamma\gamma}$	18.6	10.7	18.6	44
$\sigma \times BR_{\mu\mu}$	47	40	47	166
$\sigma \times BR_{inv.}$	0.83	_	0.60	_

ILC1000	$3.2 \text{ ab}^{-1} (-0.8, +0.2)$	$3.2 \text{ ab}^{-1} (+0.8,-0.2)$
Prod.	u u H	u u H
$\sigma \times BR_{bb}$	0.32	1.0
$\sigma \times BR_{cc}$	1.7	6.4
$\sigma \times BR_{gg}$	1.3	4.7
$\sigma \times BR_{ZZ}$	2.3	8.4
$\sigma \times BR_{WW}$	0.91	3.3
$\sigma \times BR_{\tau\tau}$	1.7	6.4
$\sigma \times BR_{\gamma\gamma}$	4.8	17
$\sigma \times BR_{\mu\mu}$	17	64

• Higgs observables: Linear *e*⁺*e*⁻ Colliders (CLIC)

CLIC380	$0.5 { m ~ab^{-1}}$	(-0.8,0)	$0.5 \text{ ab}^{-1} (+0.8,0)$			
Prod.	ZH	ννΗ	ZH	ννΗ		
σ	1.5(1.43)	-	1.8(1.43)	-		
$\sigma \times BR_{bb}$	0.81(1.2)	1.4(1.47)	0.92(1.2)	4.1(4.4)		
$\sigma \times BR_{cc}$	13(8.7)	19(15.3)	15(8.7)	24(46)		
$\sigma \times BR_{gg}$	5.7(6.6)	3.3(6.2)	6.5(6.6)	20(18.8)		
$\sigma \times BR_{ZZ}$	(19.7)	(16.1)	(19.7)	(46)		
$\sigma \times BR_{WW}$	5.1(4.4)	(4.6)	(4.4)	(14)		
$\sigma \times BR_{\tau\tau}$	5.9(3.2)	(12.9)	6.6(3.2)	(39)		
$\sigma \times BR_{\gamma\gamma}$	(31)	(36)	(31)	(108)		
$\sigma \times BR_{\mu\mu}$	(69)	(129)	(69)	(129)		
$\sigma \times BR_{inv.}$	0.57(0.68)	-	0.64(0.64)	-		

CLIC1500	$2 \text{ ab}^{-1} (-0.8,0)$	$0.5 \text{ ab}^{-1} (+0.8,0)$
Prod.	$\nu\nu H$	ννΗ
$\sigma \times BR_{bb}$	0.25	1.5
$\sigma \times BR_{cc}$	3.9	24
$\sigma \times BR_{gg}$	3.3	20
$\sigma \times BR_{ZZ}$	3.6	22
$\sigma \times BR_{WW}$	0.67	4.0
$\sigma \times BR_{\tau\tau}$	2.8	17
$\sigma \times BR_{\gamma\gamma}$	10	60
$\sigma \times BR_{\gamma Z}$	28	170
$\sigma \times BR_{\mu\mu}$	24	150

CLIC3000	$4 \text{ ab}^{-1} (-0.8,0)$	$1 \text{ ab}^{-1} (+0.8,0)$
Prod.	$\nu\nu H$	ννΗ
$\sigma imes BR_{bb}$	0.17	1.0
$\sigma \times BR_{cc}$	3.7	22
$\sigma \times BR_{gg}$	2.3	14
$\sigma \times BR_{ZZ}$	2.1	13
$\sigma \times BR_{WW}$	0.33	2.0
$\sigma \times BR_{\tau\tau}$	2.3	14
$\sigma \times BR_{\gamma\gamma}$	5.0	30
$\sigma \times BR_{\gamma Z}$	16	95
$\sigma \times BR_{\mu\mu}$	13	80

Higgs observables: Muon Colliders

MuC3000	3 ab^{-1}		MuC10000	10 a	ab^{-1}
Prod.	$\nu\nu H$ $\mu\mu H$		Prod.	$\nu\nu H$	$\mu\mu$
$\sigma \times BR_{bb}$	0.8	2.6	$\sigma \times BR_{bb}$	0.22	0.7
$\sigma \times BR_{cc}$	12	72	$\sigma \times BR_{cc}$	3.6	1^{\prime}
$\sigma \times BR_{gg}$	2.8	14	$\sigma \times BR_{gg}$	0.79	3.
$\sigma \times BR_{ZZ}$	11	34	$\sigma \times BR_{ZZ}$	3.2	11
$\sigma \times BR_{WW}$	1.5	7.5	$\sigma \times BR_{WW}$	0.40	1.
$\sigma \times BR_{\tau\tau}$	3.8	21	$\sigma \times BR_{\tau\tau}$	1.1	4.
$\sigma \times BR_{\gamma\gamma}$	6.4	23	$\sigma \times BR_{\gamma\gamma}$	1.7	4.
$\sigma \times BR_{\gamma Z}$	45	-	$\sigma \times BR_{\gamma Z}$	12	-
$\sigma imes BR_{\mu\mu}$	28	_	$\sigma \times BR_{\mu\mu}$	5.7	-

 $\mu\mu H$

0.77

17

3.3

11

1.8

4.8

4.8

in	HL-	CEP	C	FCC-	-ee	ILC						CLIC		muon-collider			
%	LHC	240	+360	240	+365	2	50	+;	500	+1'	TeV	380	+1.5TeV	+3TeV	3TeV	10TeV	10TeV
		+Z/WW		+Z/WW			$\operatorname{Giga-Z}$		Giga-Z		Giga-Z						+125
δg_{H}^{ZZ}	2.2	0.17	0.16	0.28	0.22	0.31	0.29	0.18	0.18	0.13	0.13	0.43	0.19	0.16	0.48	0.31	0.28
	_	0.19	0.17	0.31	0.25	0.37	0.35	0.26	0.25	0.23	0.23	0.56	0.41	0.4	_	_	0.39
δg_H^{WW}	2.	0.17	0.15	0.28	0.22	0.32	0.31	0.19	0.18	0.14	0.14	0.44	0.21	0.17	0.49	0.31	0.28
	_	0.18	0.17	0.31	0.25	0.37	0.36	0.26	0.26	0.24	0.23	0.56	0.42	0.41	_	_	0.39
$\delta g_{H}^{\gamma\gamma}$	2.5	0.91	0.89	1.2	1.1	1.2	1.2	1.1	1.1	0.98	0.97	1.2	1.1	1.	1.2	0.7	0.69
	_	0.91	0.9	1.2	1.1	1.2	1.2	1.1	1.1	1.	1.	1.3	1.2	1.1	_	_	0.74
$\delta g_{H}^{Z\gamma}$	11.	4.	3.8	6.7	6.1	9.3	9.1	7.	6.8	6.7	6.6	10.	8.3	5.8	9.7	5.2	5.2
	_	4.	3.8	6.7	6.1	9.3	9.1	7.	6.8	6.7	6.6	10.	8.3	5.8	_	_	5.2
$\delta g_{1,Z}$	0.31	0.025	0.023	0.044	0.03	0.069	0.067	0.031	0.025	0.025	0.022	0.1	0.06	0.052	0.1	0.025	0.025
	0.31	0.025	0.023	0.043	0.03	0.069	0.067	0.031	0.025	0.025	0.022	0.1	0.06	0.052	0.1	0.025	0.025
$\delta \kappa_{\gamma}$	0.97	0.046	0.042	0.069	0.05	0.1	0.092	0.047	0.036	0.031	0.026	0.15	0.071	0.06	0.16	0.025	0.024
	0.97	0.046	0.043	0.069	0.05	0.1	0.092	0.047	0.036	0.031	0.026	0.15	0.071	0.061	0.16	0.025	0.025
λ_Z	0.4	0.012	0.011	0.023	0.016	0.031	0.031	0.0082	0.0082	0.0028	0.0028	0.025	0.0028	0.00092	0.0027	0.00026	0.00025
	0.4	0.012	0.011	0.023	0.016	0.031	0.031	0.0083	0.0082	0.0028	0.0028	0.025	0.0028	0.00092	0.0027	0.00026	0.00026
δg_{H}^{gg}	1.8	0.44	0.43	0.74	0.68	0.85	0.85	0.66	0.66	0.49	0.49	0.94	0.71	0.59	0.87	0.46	0.43
	_	0.45	0.44	0.77	0.69	0.9	0.89	0.69	0.69	0.53	0.53	1.1	0.79	0.69	_	_	0.51
δg_{H}^{cc}	1.8	1.2	1.1	1.3	1.2	1.8	1.8	1.2	1.2	0.87	0.87	4.3	1.9	1.4	6.2	1.9	1.8
	_	1.2	1.1	1.4	1.3	1.8	1.8	1.2	1.2	0.9	0.9	4.3	1.9	1.5	_	_	1.8
δg_{H}^{bb}	4.5	0.41	0.4	0.6	0.53	0.77	0.77	0.5	0.51	0.42	0.42	0.96	0.46	0.37	0.92	0.46	0.44
	_	0.43	0.42	0.66	0.58	0.83	0.83	0.56	0.56	0.48	0.47	1.1	0.6	0.54		_	0.53
$\delta g_H^{\tau\tau}$	2.3	0.34	0.32	0.64	0.56	0.8	0.8	0.58	0.58	0.49	0.48	1.4	0.98	0.76	1.3	0.62	0.58
	_	0.36	0.34	0.68	0.6	0.87	0.86	0.63	0.63	0.53	0.53	1.4	1.	0.84	_	_	0.63
$\delta g_H^{\mu\mu}$	5.6	2.7	2.7	4.6	4.5	4.9	4.9	4.5	4.5	4.	4.	5.1	4.7	3.8	4.9	2.5	0.24
	_	2.7	2.7	4.6	4.5	4.9	4.9	4.5	4.5	4.	4.	5.1	4.7	3.8		_	0.49
$\delta\Gamma_H$	6.7	0.47	0.44	0.82	0.69	1.1	1.	0.62	0.62	0.46	0.46	1.4	0.6	0.45	1.5	0.7	0.63
	_	0.61	0.59	1.1	0.98	1.5	1.5	1.1	1.1	0.94	0.93	2.3	1.6	1.6	_	-	1.3

Higgs interactions

Optimal Observables

• Consider a Phase-space distribution linear in some coefficients c_i :

$$S(\Phi) = \frac{d\sigma}{d\Phi} \qquad S_0(\Phi) = \frac{d\sigma}{d\Phi} \Big|_{SM} \qquad c_i S_i(\Phi) = \frac{d\sigma}{d\Phi} \Big|_{Interf. SM-NP}$$

 $S(\Phi) - S_{\alpha}(\Phi) + \sum c \cdot S \cdot (\Phi)$

In the limit of large statistics, the observables

$$O_i(\Phi) = rac{S_i(\Phi)}{S_0(\Phi)}$$

(See e.g., Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

provide the most precise statistical information about the coefficients c_i around the point $c_i=0$, $\forall i$

$$\operatorname{cov}(c_i,c_j) = \left(\mathcal{L} \int d\Phi rac{S_i(\Phi)S_j(\Phi)}{S_0(\Phi)}
ight)^{-1} + \mathcal{O}(c_k)$$

OO minimize the volume of the 1- σ ellipsoid

• Idealized (no systematics) \Rightarrow We compensate omission of systematics via conservative selection efficiency ε

$$\mathcal{L} \longrightarrow \varepsilon \mathcal{L}$$

Optimal Observables

• diBoson: We work with $e^+e^-
ightarrow W^+W^-$ (All final state decays)

$$SMEFT: \qquad S(\Phi) = S_{0}(\Phi) + \sum_{i} c_{i}S_{i}(\Phi)$$

$$SMEFT: \qquad S(\Phi) = \frac{d\sigma^{d}}{d\Phi} |_{SM} \qquad c_{i}S_{i}(\Phi) = \frac{d\sigma}{d\Phi} |_{Interf. SM-NP}$$

$$Optimal Observables function of 5 angles$$

$$S(\Phi) = \frac{d\sigma}{d\cos\theta_{W} d\varphi_{1} d\cos\theta_{1} d\varphi_{2} d\cos\theta_{2}}$$

$$S(\Phi) = \frac{d\sigma}{d\cos\theta_{W} d\varphi_{1} d\cos\theta_{1} d\varphi_{2} d\cos\theta_{2}}$$

$$Full dim-6 SMEFT parameterization at LO:$$

$$10 independent BSM deformations$$

$$c_{i} = \left\{ \frac{\delta g_{1Z}, \ \delta \kappa_{\gamma}, \ \lambda_{Z}, \ (\delta g_{L,R}^{Ze})_{c}, \ (\delta g_{L}^{Wub})_{t}, \ (\delta g_{L}^{Wub})_{q}, \ \delta m$$

Jorge de Blas Univ. of Granada / CERN

 e^+

е

Higgs couplings fits January 23, 2023