Theoretical precision of Luminosity determination at Higgs factories

S. Jadach, W. Płaczek, M. Skrzypek, B.F.L. Ward, S.A. Yost

Partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme.

6th FCC physics workshop in Krakow, 23–27 January 2023

1/16

Intro - lumi basics

Bhabha cross sect. depends on detector acceptance angles

$$\sigma_{\mathit{Bh}} \simeq 4\pi\alpha^2 \bigg(\frac{1}{\mathit{t}_{\min}} - \frac{1}{\mathit{t}_{\max}}\bigg) = 4\pi\alpha^2 \bigg(\frac{\mathit{t}_{\max} - \mathit{t}_{\min}}{\overline{\mathit{t}}^2}\bigg), \quad \overline{\mathit{t}} = \sqrt{\mathit{t}_{\min}\mathit{t}_{\max}}$$

 \overline{t} is the characteristic scale of the process \overline{t}/s is the suppression factor between s- and t-channel contributions

Machine	$\theta_{min} \div \theta_{max}$ [mrad]	\sqrt{s} [GeV]	₹/s	\sqrt{t} [GeV]
LEP	28÷50	M_Z	$3.5 imes 10^{-4}$	1.70
FCCee	64÷86	M_Z	13.7×10^{-4}	3.37
FCCee	64÷86	240	13.7×10^{-4}	8.9
FCCee	64÷86	350	13.7×10^{-4}	13.0
ILC	31÷77	500	6.0×10^{-4}	12.2
ILC	31÷77	1000	6.0×10^{-4}	24.4
CLIC	39÷134	3000	13.0×10^{-4}	108

Luminosity today – BHLUMI status

The 2019 update comes from P. Janot & S. Jadach Phys.Lett.B 803 (2020) 135319

Type of correction / Error	1999	Update 2019
(a) Photonic $\mathcal{O}(L_e\alpha^2)$	0.027%	0.027%
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.015%
(c) Vacuum polariz.	0.040%	0.009%
(d) Light pairs	0.030%	0.010%
(e) Z and s -channel γ exchange	0.015%	0.015%
(f) Up-down interference	0.0014%	0.0014%
(f) Technical Precision	_	(0.027)%
Total	6.1×10^{-4}	3.7×10^{-4}

Table: Summary of the total (physical+technical) theoretical uncertainty for a typical calorimetric LEP luminosity detector within the generic angular range of 18–52 mrad. Total error is summed in quadrature.

- Hadronic vacuum polarisation from F. Jegerlehner (fortran code hadr5x.f) 2019
- ► Light pairs: real FERMISV MC by J. Hilgart et.al. 1993 and KoralW by S. Jadach et.al.; virtual S. Actis et.al. 2008

Current BHLUMI precision forecast for FCCee

Current BHLUMI precision forecast for FCCee			
Type of correction / Error	<i>M</i> _Z (2019) [1]	240 GeV	350 GeV [2]
(a) Photonic $\mathcal{O}(L_e\alpha^2)$	0.027%	0.032%	0.033%
(b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$	0.015%	0.026%	0.028%
(c) Vacuum polariz.	0.009%	0.020%	0.022%
(d) Light pairs	0.010%	0.015%	0.015%
(e) Z and s -channel γ exchange	0.09%	0.25% (0.034%)	0.5% (0.07%)
(f) Up-down interference	0.009%	0.010%	0.010%
(g) Technical Precision	[0.027%]		
Total	10×10^{-4}	25×10^{-4}	50×10^{-4}
		(6×10^{-4})	(8.7×10^{-4})

Table: Entries in curly brackets represent hypothetic situation with all Born-level interferences included in BHLUMI

Entry (c) for M_Z optimistic, 0.015% more realistic

Few times worse than at LEP!!

- [1] S. Jadach et.al. Phys. Lett B790 (2019) 314
- [2] S. Jadach et.al. Eur. Phys. J. C (2021) 81:1047

Photonic corrections

- ▶ Included in BHLUMI: $\mathcal{O}(\alpha + \alpha^2 L^2)$ -YFS exponentiated
- ▶ To be added: to BHLUMI $\mathcal{O}(\alpha^3 L^3)$ and $\mathcal{O}(\alpha^2 L^1)$ known
- ► Errors: $\mathcal{O}(\alpha^4 L^4)$ and $\mathcal{O}(\alpha^3 L^2)$
 - ▶ reference points LEP: $\mathcal{O}(\alpha^3 L^3) \simeq 1.5 \times 10^{-4}$ and $\mathcal{O}(\alpha^2 L^1) \simeq 2.7 \times 10^{-4}$
 - estimated based on LEP analysis and scale $(\alpha/\pi)^n L^m$
 - scale with energy/angles as $\ln^m(\bar{t}_{xx}/m_e^2)$
- ▶ Likely not needed: $\mathcal{O}(\alpha^2 L^0)$ known $\sim \mathcal{O}(\alpha^2 L^1)/L \simeq 2.7 \times 10^{-4}/16.3 \simeq 0.17 \times 10^{-4}$

$(\gamma_s + Z_s + \gamma_t + Z_t)^{\otimes 2}$ EW interferences

- ▶ Included in BHLUMI: $(\gamma_s + Z_s) \otimes \gamma_t$
- ► To be added:
 - complete Born trivial
 - ▶ complete $\mathcal{O}(\alpha_{EW})$ known, e.g. BHWIDE
- ▶ Error: $\mathcal{O}(\alpha_{EW}^2)$
 - estimated at FCCee(M_Z) based on analysis of
 S. Jadach et.al. Phys. Lett B790 (2019) 314 from BHWIDE
 - estimated at other energies/angles based on analysis done with O(α_{EW}) DIZET/ZFITTER (by changing switch NPAR(2) from 2 to 3) M. Battaglia, S. Jadach, D. Bardin, eConf C010630 (2001) E3015, http://www.slac.stanford.edu/econf/C010630/papers/E3015.PDF for the energies of 800 GeV and 3 TeV. Extrapolation from 800 to 350/240 GeV not done ⇒ error likely overestimated (factor of 2-3 ???)
 - ▶ Error at higher \bar{t}/M_7^2 almost entirelly from $\gamma_t \otimes Z_t$ interference
- ► Amplitude-level exponentiation (KKMC-style) needed to account for leading $\mathcal{O}(\alpha_{FW}^2)$ corrs.

QED photonic up-down interference

- ▶ Missing in BHLUMI
 - size at $\mathcal{O}(\alpha)$: $0.07 \times \overline{t}_{xx}/s$ easy to include, \overline{t}_{xx}/s depends only on angles LEP \rightarrow FCCee: t/s grows 4 times (LEP \rightarrow ILC: 2 times)
- ▶ Error: h.o.t. suppressed by $(\alpha/\pi) \ln(\bar{t}_{xx}/m_e^2)$ times safety factor of 2 $(\mathcal{O}(\alpha_{QED}^2)$ calculations exist) almost negligible

Vacuum polarisation

► Uncertainty due to vacuum polarisation:

$$\delta_{VP}\sigma/\sigma = 2\delta\alpha_{eff}(\bar{t})/\alpha_{eff}(\bar{t})$$

• $\delta \alpha_{\it eff}(\bar{t})$ from

F. Jegerlehner, CERN Yellow Reports: Monographs 3 (2020) 9-37

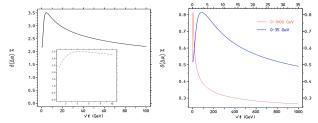


Fig. B.1.15: Hadronic uncertainty $\delta\Delta\alpha_{\rm had}(\sqrt{t})$. The progress since LEP times, from 1996 (left) to now (right) is remarkable. A great deal of much more precise low-energy data, $\pi\pi$, etc., are now available.

- $\alpha_{\it eff}(\bar{t})$ from F. Jegerlehner, *Nucl. Phys. Proc. Suppl.* **162** (2006) 22–32
- ▶ By FCCee operation time factor of 2 improvement expected (F. Jegerlehner)

Light pairs

- Current state of the art: BHLUMI + external four-fermion code + virtual semianalytical corrections
 - P. Janot and S. Jadach, Phys. Lett. B 803 (2020) 135319
- included components:
 - ee-pair, $\mu\mu$ -pair, $\tau\tau$ -pair, qq-pair with s-channel photonic emissions (FERMISV, KORALW)
 - result for LEP: $4 \times 10^{-4} \pm 1 \times 10^{-4}$
- ▶ future prospects for external 4 fermion code scenario
 - error components:
 - ▶ $4f + \gamma$ (25% of 4f) s vs. t mismatch \sim 30% $\mathcal{O}(\alpha)$ 4fermion calculations exist for selected final states
 - ▶ $4f + 2\gamma$, 6f
- future prospects for BHLUMI upgrade scenario
 - error components:
 - ▶ $4f + \gamma$ absent correct t-channel behavior (LL+soft), $\mathcal{O}(\alpha)$ 4fermion likely not needed
 - $4f + 2\gamma$ included via exponentiation + LL,
 - ▶ 6f

Light pairs

- Extrapolation to other energies/angles

 use LEP result for ff: $4 \times 10^{-4} \pm 1 \times 10^{-4}$ and scale with $\ln^2(\bar{t}_{xx}/m_{vv}^2)/\ln^2(\bar{t}_{LEP}/m_{vv}^2)$ (pairs)
 - use LEP result for ff γ terms: 20% × 4 × 10⁻⁴ (G. Montagna, M. Moretti, O. Nicrosini, A. Pallavicini, and F. Piccinini, *Nucl. Phys.* **B547** (1999) 39–59), and scale with $\ln(\bar{t}_{xx}/m_{\rm p}^2)/\ln(\bar{t}_{IFP}/m_{\rm p}^2)$ (photons)

 - ightharpoonup au-pair (negligible at LEP) estimated relative to muon-pair as $\ln^2(\overline{t}_{xx}/m_{\pi}^2)/\ln^2(\overline{t}_{xx}/m_{\mu}^2)$
 - hadron-pair estimated relative to muon-pair as $R_{had} \times \ln^2(\bar{t}_{xx}/(0.5 GeV)^2) / \ln^2(\bar{t}_{xx}/m_u^2)$

Lumi at FCCee: Technical precision

- ► At LEP BHLUMI technical prec. was tested in two ways:
 - ▶ Comparison with semian. integration of $\mathcal{O}(\alpha^2)_{exp}$ matrix el. of BHLUMI: agreement 2.7 × 10⁻⁴
 - ▶ Comparison with LUMLOG+OLDBIS hybrid MC and with SABSPV MC. All of these MCs have incomplete soft resummation: agreement 2.7×10^{-4} (for sharp photon energy cut-offs 1.7×10^{-3})
- Now another MC code BabaYaga [Balossini et.al.] with complete soft-photon resummation is available. After upgrade to NNLO in hard process it could be ideal for technical comparison with BHLUMI

Lumi at FCCee - Forecast

Forecast				
Type of correction / Error	FCCee _{M_Z} [1]	FCCee ₂₄₀	FCCee ₃₅₀	
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	0.10×10^{-4}	0.13×10^{-4}	
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	$0.26 \times 10^{-4(a)}$	$0.27 \times 10^{-4(a)}$	
(c) Vacuum polariz.	0.6×10^{-4}	1.0×10^{-4}	1.1×10^{-4}	
(d) Light pairs	$0.5 imes 10^{-4}$	0.4×10^{-4}	0.4×10^{-4}	
(e) Z and s -channel γ exch.	0.1×10^{-4}	$1.0 \times 10^{-4(*)}$	$1.0 \times 10^{-4(*)}$	
(f) Up-down interference	0.1×10^{-4}	0.09×10^{-4}	0.1×10^{-4}	
Total	1.0×10^{-4}	1.5×10^{-4}	1.6×10^{-4}	

Numbers: (*) likely overestimated, (a) include safety factor 2. Technical error is not included Precision dominated by:

- Vacuum polarisation (c) seems irreducible.
- ▶ The EW $\mathcal{O}(\alpha^2)$ hard process uncertainty (e). Numbers (*) are likely overestimated (taken from 800 GeV estimate)
 - factor 2 too big ???.

Precision loss at higher energies reasonable (?) factor of 2 loss w.r.t. M_Z

[1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, *Phys. Lett. B* 790 (2019) 314

Lumi at FCCee $_{M_7}$ – Forecast study

Forecast study for FCCee _{M₇}			
Type of correction / Error	Published [1]	Strict	Redone
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	0.10×10^{-4}	0.10×10^{-4}
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	0.06×10^{-4}	0.06×10^{-4}
(b') Photonic $\mathcal{O}(\alpha^2 L_e^0)$		0.17×10^{-4}	0.17×10^{-4}
(c) Vacuum polariz.	0.6×10^{-4}	0.6×10^{-4}	0.6×10^{-4}
(d) Light pairs	0.5×10^{-4}	0.4×10^{-4}	0.27×10^{-4}
(e) Z and s -channel γ exch.	0.1×10^{-4}	0.1×10^{-4}	0.1×10^{-4}
(f) Up-down interference	0.1×10^{-4}	0.08×10^{-4}	0.08×10^{-4}
Total	1.0×10^{-4}	0.76×10^{-4}	0.70×10^{-4}

- ▶ In line (d) of the column "Strict" safety factor 1.25 is removed as compared to Ref. [1] (removed at 240 and 350 GeV as well)
- ▶ In line (f) of the column "Strict" value not rounded up is used as compared to Ref. [1] (not rounded for 240 and 350 GeV either)
- ► In line "Total" of the column "Strict" value not rounded up is used as compared to Ref. [1] (removed at 240 and 350 GeV as well)
- Line (b') with missing non-logarithmic $\mathcal{O}(\alpha^2 L_e^0)$ correction is added for completeness (numerically not important)

[1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, *Phys. Lett. B* 790 (2019) 314

Lumi at $FCCee_{M_Z}$ – Forecast study

Forecast study for FCCee _M				
Type of correction / Error	Published [1]	Strict	Redone	
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	0.10×10^{-4}	0.10×10^{-4}	
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	0.06×10^{-4}	0.06×10^{-4}	
(b') Photonic $\mathcal{O}(\alpha^2 L^0)$		0.17×10^{-4}	0.17×10^{-4}	
(c) Vacuum polariz.	0.6×10^{-4}	0.6×10^{-4}	0.6×10^{-4}	
(d) Light pairs	0.5×10^{-4}	0.4×10^{-4}	0.27×10^{-4}	
(e) Z and s -channel γ exch.	0.1×10^{-4}	0.1×10^{-4}	0.1×10^{-4}	
(f) Up-down interference	0.1×10^{-4}	0.08×10^{-4}	0.08×10^{-4}	
Total	1.0×10^{-4}	0.76×10^{-4}	0.70×10^{-4}	

- ▶ In line (d) of the last column light pairs are re-analysed w.r.t. [1] as it was done for the other setups ($ff\gamma$ non-leading contrib. less conservative $z_{cut} \leq .5$ can help, hadr-pair uncertainty set to few per-cent as in [2])
- ▶ Line (e): size of $\mathcal{O}(\alpha^2)_{EW}$ corrs. to be revisited available BHWIDE (conservative scaling 1 × 10⁻⁴) and DIZET (switches, at higher energies) CEEX amplitude level exponentiation instrumental (KKMC style) ?
- [1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, *Phys. Lett. B* 790 (2019) 314
- [2] ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 66 (1995) 3-18

Possible precision $\sim 0.7 \times 10^{-4}$ within the reach ??

Lumi forecast at ILC and CLIC GeV

	Forecast		
Type of correction / Error	ILC ₅₀₀	ILC ₁₀₀₀	CLIC ₃₀₀₀
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.13×10^{-4}	0.15×10^{-4}	0.20×10^{-4}
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.27×10^{-4}	0.37×10^{-4}	0.63×10^{-4}
(c) Vacuum polariz.	1.1×10^{-4}	1.1×10^{-4}	1.2×10^{-4}
(d) Light pairs	0.4×10^{-4}	0.5×10^{-4}	0.7×10^{-4}
(e) Z and s -channel γ exch.	$1.0 \times 10^{-4(*)}$	2.4×10^{-4}	16×10^{-4}
(f) Up-down interference	$< 0.1 \times 10^{-4}$	$< 0.1 \times 10^{-4}$	0.1×10^{-4}
Total	1.6×10^{-4}	2.7×10^{-4}	16×10^{-4}

Number (*) is somewhat overestimated (taken from 800 GeV estimate)

- ▶ Precision at high energies totally due to the EW $\mathcal{O}(\alpha^2)$ hard process uncertainty (e).
- ► EW interferences are dominated by $\gamma_t \otimes Z_t$ (15% of $\gamma_t \otimes \gamma_t$ at CLIC) and $Z_t \otimes Z_t$ (2% of $\gamma_t \otimes \gamma_t$ at CLIC)
 - usefull for $\mathcal{O}(\alpha_{EW}^2)$ calculation ?

CEEX amplitude level exponentiation mandatory?

At 3 TeV loss of precision is dramatic, dominant $\mathcal{O}(\alpha_{FW}^2)$ and CEEX are a must!

Summary

- Our starting point is BHLUMI 4.04 with the inherited from LEP precision of 0.06%
- ▶ 2019 development of Janot&Jadach reduced this error to 0.037%
- ► The precision of BHLUMI for FCCee₂₄₀ as of now is 25×10^{-4} and forecasted one is 1.5×10^{-4} , factor of 2 worse than at FCCee_{Mz}
- ▶ At high energies forecasted precision deteriorates drastically, up to 16×10^{-4} for CLIC at 3 TeV, due to missing $\mathcal{O}(\alpha^2)_{EW}$ corrections
- ▶ Forecasted in Jadach et.al. (2019) precision 1×10^{-4} at FCCee_{MZ} seems to be reducible to 0.7×10^{-4} by reducing error on pair emission and loosening conservative approach to safety factors; $\mathcal{O}(\alpha_{EW}^2)$ corrs must be revisited. Further precision improvement seems to be blocked by the error on vacuum polarisation contrib.
- ► Technical precision requires second MC code, e.g. BABAYAGA