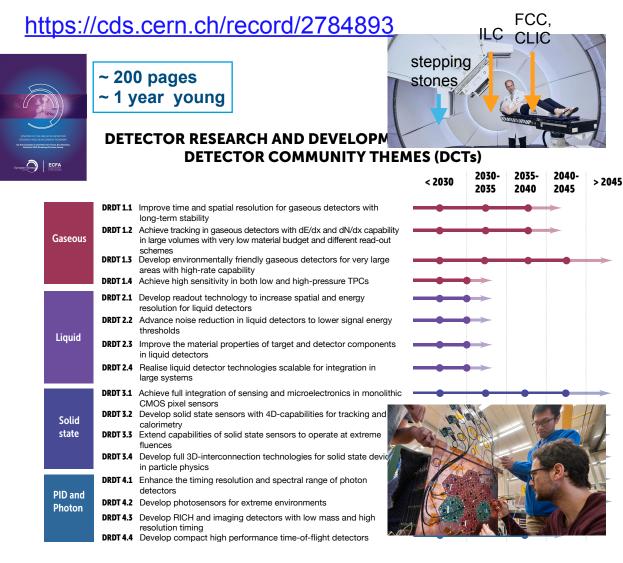
Introduction to Detector Sessions

6th FCC Physics and Detector Workshop Krakow, January 24, 2023

Mogens Dam, NBI Philipp Roloff, CERN <u>Felix Sefkow, DESY</u>

Some Introductory Remarks on...

Organisation and Sessions


Detector Roadmap Implementation, ECFA WG3 Detectors, and Detector Concepts for FCC

Detector-related Sessions this Week

How to Get Involved

ECFA Detector Roadinap Sumnary

Relating Technology R&D to Major Drivers from Facilities

Dates when R&D finished and real engineering & construction can start				FCC, ILC CLIC			
				stepping stones	Ļ	Ļ	
Quantum	DRDT 5.2 DRDT 5.3	Promote the development of advanced qua Investigate and adapt state-of-the-art de technologies to particle physics Establish the necessary frameworks and exploration of emerging technologies Develop and provide advanced enabling ca			→		
Calorimetry	DRDT 6.2	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods Develop calorimeters for extreme radiation, rate and pile-up environments					
Electronics	DRDT 7.2 DRDT 7.3 DRDT 7.4	Advance technologies to deal with greatly Develop technologies for increased intelli Develop technologies in support of 4D- a Develop novel technologies to cope with required longevity Evaluate and adapt to emerging electroni technologies		•			
Integration	DRDT 8.2 DRDT 8.3	Develop novel magnet systems Develop improved technologies and syst Adapt novel materials to achieve ultraligh precision mechanical structures. Develop Interfaces. Adapt and advance state-of-the-art syste including environmental, radiation and be		•			
Training	DCT 1 DCT 2	Establish and maintain a European coordinate instrumentation Develop a master's degree programme in inst					

Detector R&D Themes (DRDTs) and Detector Community Themes (DCTs). Here, except in the DCT case, the final dot position represents the target date for completion of the R&D required by the latest known future facility/experiment for which an R&D programme would still be needed in that area. The time from that dot to the end of the arrow represents the further time to be anticipated for experiment-specific prototyping, procurement, construction, installation and commissioning. Earlier dots represent the time-frame of intermediate "stepping stone"

projects where dates for the corresponding facilities/experiments are known. (Note that R&D for Liquid Detectors will be needed far into the future, however the DRDT lines for these end in the period 2030-35 because developments in that field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D. Similarly, dotted lines for the DCT case indicate that beyond the initial programmes, the activities will need to be sustained going forward in support of the instrumentation R&D activities).

R&D Collaborations

Reloaded.

Follow the successful model of R&D collaborations for the LHC

- funding in place since ~1986, R&D collaborations established in 1990
- Aim at few large DRD collaborations, to keep it manageable
- Take full account of existing, successful and well managed R&D coll.
- Integrate with CERN EP R&D, AIDAinnova, RDxy, CALICE,...
- Community-driven approach, supported by ECFA Roadmap Task Forces
- invite proposals, moderate process, timeline 1-2 years

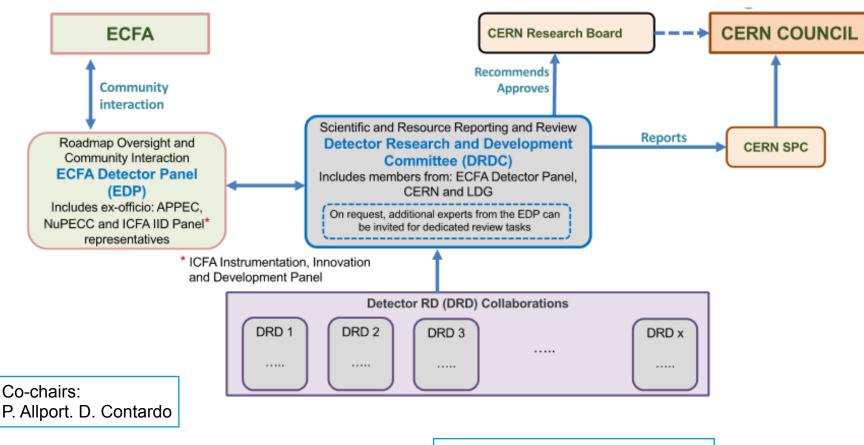
Reasonably dimensioned review process (ECFA and CERN)

- addressing needs of future experiments is important criterion
- worldwide perspective

Review and Approval Process

Lightweight and commensurate with effort

Scientific and Resource Reporting and Review by a Detector Research and Development Committee (DRDC)


- yearly follow-up
- report via SPC to Council

Assisted by the ECFA Detector Panel (EDP):

- the scope, R&D goals, and milestones should be vetted against the vision encapsulated in the Roadmap.
- EDP exists, hosted at DESY: <u>http://cds.cern.ch/record/</u> <u>2211641/files/</u>

once every two years

resources awarded to and held by institutes

Implementation Timeline

Ambituous Schedule

Goal: Transition to new scheme during 2023

• approval of LHC-oriented RD50 (silicon), RD51 (gas detector) collaborations expires Dec 2023

Major Steps:

- community input (via existing R&D bodies where possible) by Q1 2023
 - To get involved, register at https://indico.cern.ch/event/957057/page/27294-implementation-of-the-ecfa-detector-rd-roadmap
- Work Package structure (Tasks, Participants, Resources, Deliverables, Milestones) by spring 2023
- In parallel, **DRDC** mandate and membership defined
- Written **proposals**, based on ECFA Detector Roadmap, by **mid 2023**
 - do not repeat roadmap; concrete plans, deliverables, resource-loaded (not a wish list) for period 2024-2030
 - aim at 20 pages per each of 9 the DRDs (or not much more)
- Review (by DRDC, assisted by EDP) in fall 23, approval by end 2023
- R&D collaborations operational, "Grant Agreements" (MoU signatures) through 2024

Challenge

- funding not exactly known but cost projections should be backed by Funding Agencies
- interaction with Agencies needed in parallel to proposal preparation

Implementation Process Has Started

Meetings

DRD6 Calorimeters

- Jan 12 at CERN: https://indico.cern.ch/event/1212696/
- 120 participants, 60 in person, lively and constructive discussions
 - participation from Americas and Asia; DOE was connected and voiced support
- large part of proposed R&D is targeted at FCCee
- 2nd community Meeting April 20: WP structure,...

More meetings scheduled

- DRD1 Gas detectors March 1-3 at CERN
- DRD3 Solid State detectors March 22-23 at CERN https://indico.cern.ch/e/1214410
- DRD4 Photodetectors and PID t.b.a.
- DRD7 Electronics March 14-15 at CERN https://indico.cern.ch/event/1214423/

ECFA Study WG3 Detectors: Plans

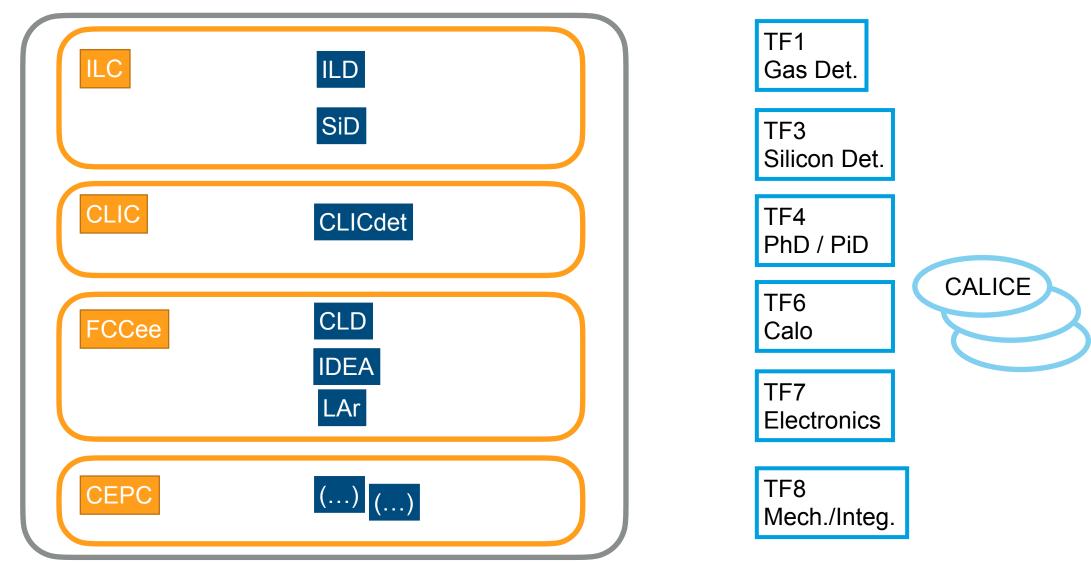
For this year

The Roadmap implementation process with its ambitious timescale challenges the detector R&D community

- Meetings, proposals, coordination heavy load
- Resources for actual work are still at a very low level, and progress moderate (apart from exceptions)

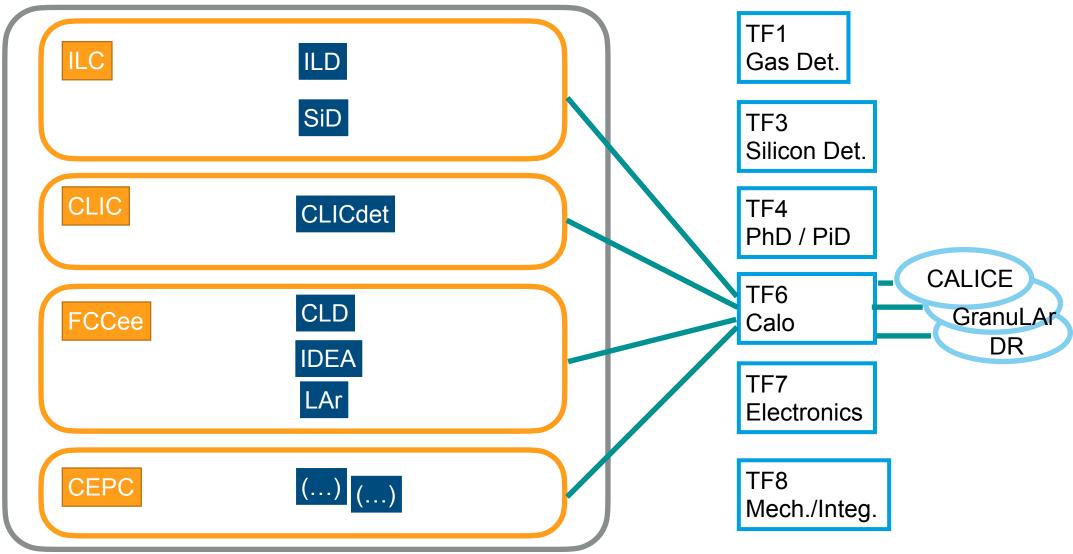
Main priority of ECFA WG3 is to support this process

- provide input on detector requirements and needed R&D
- provide a forum for feedback on R&D plans
- help R&D groups to convincingly make their case for a strategic R&D program
- make sure that Higgs factories well represented among other targets of DRDs

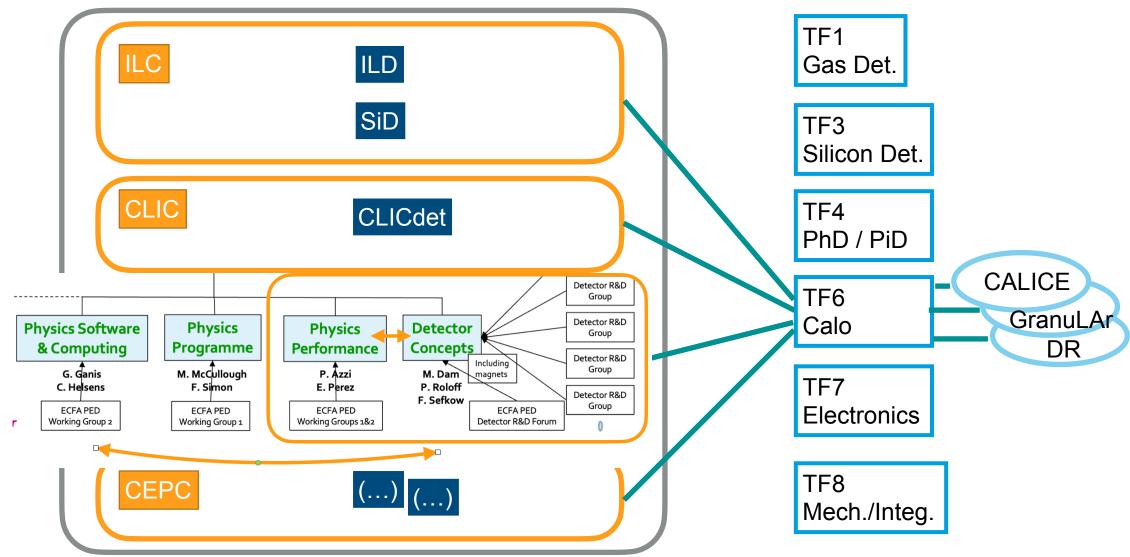

Plan a series of workshops: bring together DRDs and studies / concepts

- Tracking and Vertexing for Higgs factories (TF1, TF3) May 30 June 1 at CERN (proposed)
- Calorimetry (and PD/PID?) for Higgs factories ((TF4,) TF6): May 3-5 at CERN (confirmed)
- Electronics and integration (TF7, TF8)
- Systematics, Alignment and Calibration

Will also be discussed in individual projects (ILC, FCC), but keep global view and ensure coherence here


More Generally

Higgs factories


Example

Topical Workshop on Calorimetry

Example

Topical Workshop on Calorimetry

Detector R&D Collaboration Level: look at all future projects of European Strategy

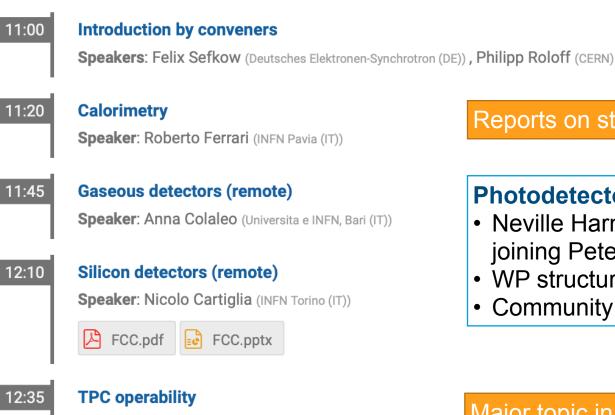
- Community meetings collect input: what the groups intend to do, receive community feedback
- Work package definition, resource loading, proposal writing

ECFA Study Level: look at all future Higgs Factories

- revise requirements, identify synergies and differences
- streamline interaction with R&D groups: focus on e+e-
- look ahead: will also support review process where R&D groups must demonstrate that they address the needs

FCC PED level: look at FCCee (and FCChh)

- identify circular-collider-specific needs: continuous read-out, cooling, trigger, Z-pole running, specialised detectors (4 IRs)
- evolve detector concepts to support optimisation and prototyping
- common meetings with performance and software: benchmarks, figures of merit, simulation and reconstruction tools
 - follow-up of Kick-off workshop last summer; much depends on full simulation


Detector Session

This one

0 Detector

Convener: Franco Bedeschi (Universita & INFN Pisa (IT))

Speaker: Paul Colas (CEA/Irfu)

Reports on status and plans towards DRDs

Photodetectors and Particle ID:

- Neville Harnew -> Christian Joram joining Peter Krizan
- WP structure following Roadmap
- Community Meeting in spring

Major topic in LCTPC and ILD

Joint Detector / Software

Tomorrow morning

11:00 → 13:05 Joint Detector/Software

Strategy and plans for detector software Speaker: Brieuc Francois (CERN)

Progress towards full simulation models

ARC: progress update and plans towards full simulation

Speaker: Martin Tat (University of Oxford)

Modelling signal digitisation for test calorimeters: the CALICE experience (remote)

Speaker: Vincent Boudry (LLR, CNRS, École polytechnique, Institut Polytechnique de Paris)

5 Modelling signal digitisation for trackers (remote)

Speaker: Riccardo Farinelli (Universita e INFN, Ferrara (IT))

Important part of it: digitisation

12:40

Performance of an ALICE ITS3-like vertex detector for FCC-ee (remote) and progress on the IDEA vertex detector implementation in full simulation

Speakers: Armin IIg (University of Zurich), Leila Freitag (University of Zürich)

stepping stone at work

Joint Detector / MDI

This afternoon

17:00 → 19:00 **Joint**

Joint MDI/Detector

Convener: Gerardo Ganis (CERN)

Introduction by conveners

Speaker: Manuela Boscolo (INFN e Laboratori Nazionali di Frascati (IT))

Mechanical model of FCC-ee MDI

Speaker: Francesco Fransesini

17:45 Detectors integration in the MDI area

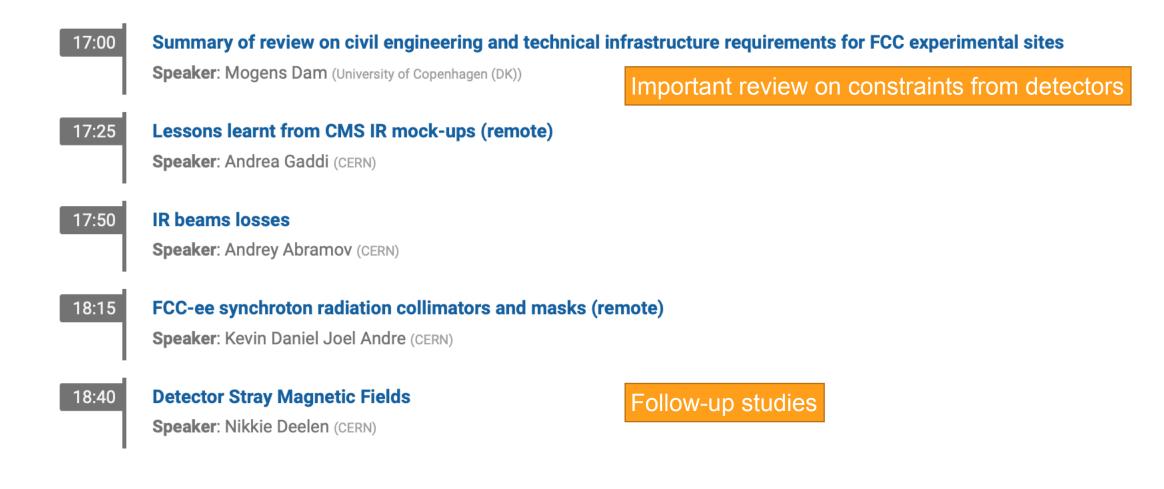
Speaker: Franco Bedeschi (Universita & INFN Pisa (IT))

Critical input to Feasibility Study mechanical engineering / integration complex simulations

18:10 Status and Perspectives for FCC-ee Detector Background Studies (remote)

Speaker: Andrea Ciarma (CERN)

18:35


FCC-hh detector concept

Speaker: Anna Zaborowska (CERN)

Tomorrow afternoon

17:00 → 19:05 **MDI**

How To Get Involved

More on Friday

Process towards Detector R&D Collaborations

• register at <u>https://indico.cern.ch/event/957057/page/27294-implementation-of-the-ecfa-detector-rd-roadmap</u>

Progress or new ideas in FCC-targeted R&D, detector concept optimisation

- Monthly Detector Concept meetings https://indico.cern.ch/category/15054/ next on Mon Feb 13
- please contact us (Mogens Dam, Philipp Roloff, FS), and sign up to FCC-PED-DetectorConcepts@cern.ch

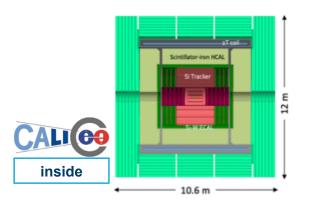
Optimisation studies with full simulation

- see overview by Philipp Roloff: <u>https://indico.cern.ch/event/1137809/contributions/4813817/attachments/</u> 2420501/4143312/fcc_detector_concepts_meeting_04_04_2022.pdf
- many open topics, existing framework

Contributions towards full simulations

- validation of CLD, further development of IDEA and GranuLAr
- contact software convenors and detector concept groups

Feasibility of the MDI

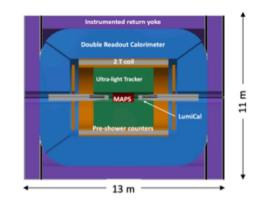

• engineering and simulation; contact MDI convenors

Back-up

Detector Concepts

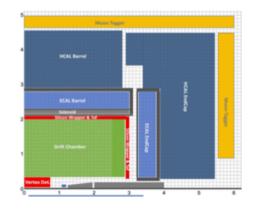
In a Nutshell

CLD


- Well established design
 - ILC -> CLIC detector -> CLD
- Engineering needed to make able to operate with continous beam (no pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations?
 - σ_p/p, σ_E/E
 - PID (**O**(10 ps) timing and/or RICH)?

• ...

- Robust software stack
 - Now ported (wrapped) to FCCSW



IDEA

- Less established design
 - But still ~15y history: 4th Concept
- Developed by very active community
 - Prototype construction / test beam compains
 - Italy, Korea,...
 - Is IDEA really two concepts? Or will it be?
 - w, w/o crystals
 - Software under active development
 - Being ported to FCCSW

Noble Liquid ECAL based

- A design in its infancy
- High granul Noble Liquid ECAL is the core
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

• Full simulation of ECAL available in FCCSW

Detector Concepts

In a Nutshell

CLD

	21 col	
CALICO	Scietilator-iron HCAL	
inside		
	← 10.6 m	

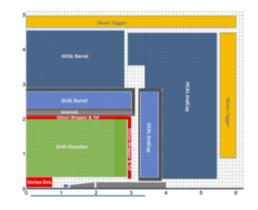
- Well established design
 - ILC -> CLIC detector -> CLD
- Engineering needed to make able to operate with continous beam (no pulsing)
 - **Cooling of Si-sensors & calorimeters** ٠
- Possible detector optimizations? .
 - $\sigma_{\rm p}/\rm p, \sigma_{\rm F}/\rm E$
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?
 - ...
- Robust software stack
 - Now ported (wrapped) to FCCSW

- (placeholder for IDEA DC) Less established design But still ~15y history: 4th Concept Developed by very active community • Prototype construction / test beam compains Italy, Korea,...
 - Is IDEA really two concepts? Or will it be?

"plug'n'play"

Dual-readout calorimeter

w, w/o crystals ٠


DD4hep geometry

CLIC SiD tracker

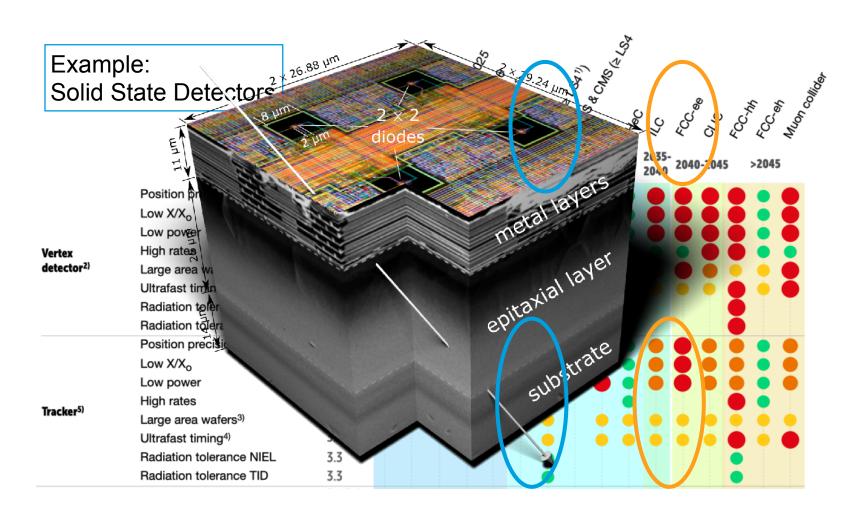
- Software under active development
 - Being ported to FCCSW

Variants and permutations are possible (and sometimes reasonable), to streamline R&D efforts

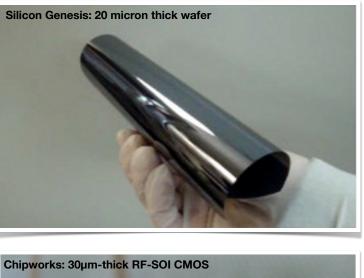
Noble Liquid ECAL based

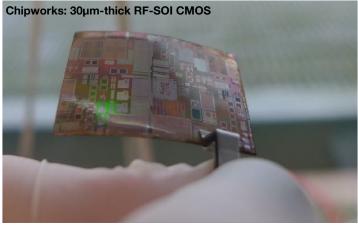
- A design in its infancy
- High granul Noble Liquid ECAL is the core
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

Full simulation of ECAL available in FCCSW



18


DESY. Detector Concepts | Felix Sefkow | January 2023


Synergies, Stepping Stones, R&D collaborations

Looking Across the Fence, and Beyond Tomorrow

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 9

Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 😑 Desirable to enhance physics reach 🔵 R&D needs being met