

Status and Plans for Calorimetry DRD

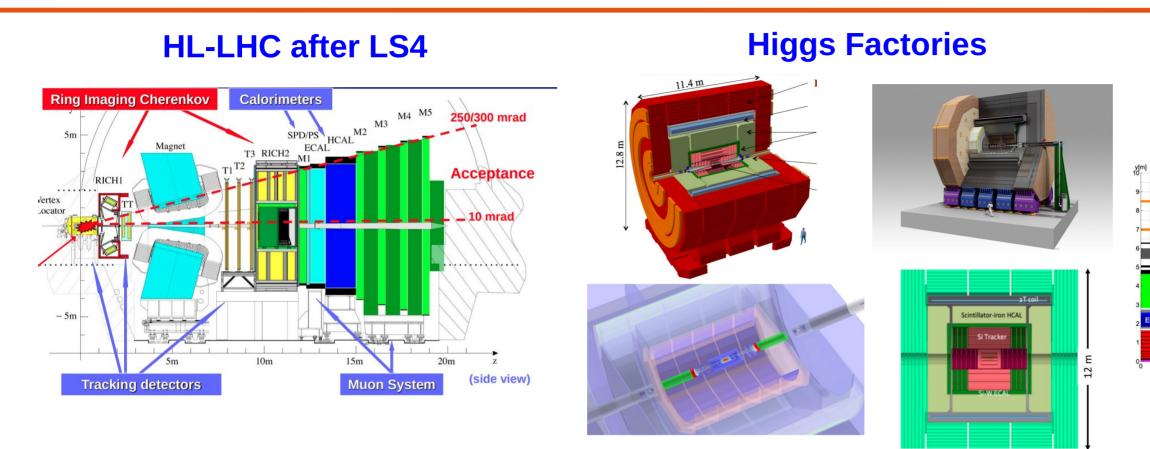
Roberto Ferrari on behalf of the DRD TF6+ Task Force

Martin Aleksa, Etiennette Auffray-Hillemanns, Dave Barney, Roberto Ferrari, Gabriella Gaudio, Roman Pöschl, Felix Sefkow, Frank Simon, Tommaso Tabarelli de Fatis

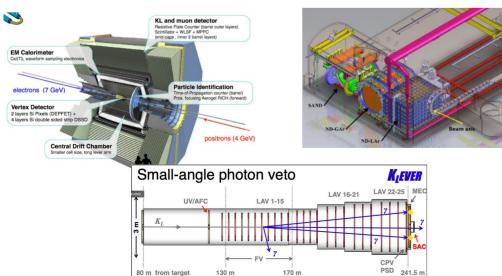
6th FCC Physics Workshop Krakow, 24 Jan 2023

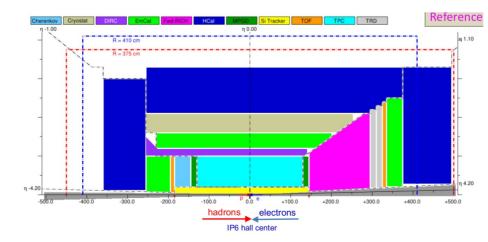
Many slides shown hereafter inspired by or stolen from talks by K. Jakobs, P. Allport and F. Sefkow

Quick overview of ECFA R&D Roadmap


Road toward implementation of Calorimetry DRD

• Outcomes of 1st Community Meeting

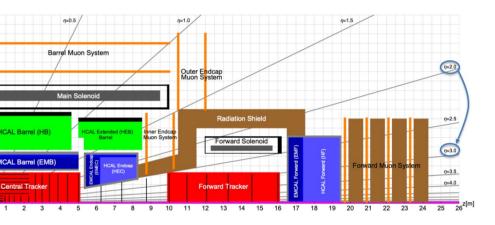

• Final considerations



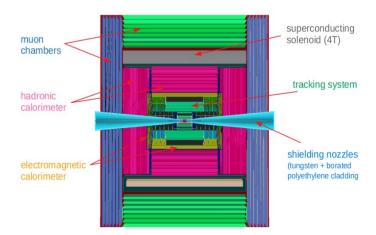
(Main) Target Projects of Detector R&D

SuperKEKB, DUNE ND and Fixed Target

EiC


10.6 m

6th FCC Physics workshop – Krakow, 24.01.2023



Future hadron colliders (including eh colliders)

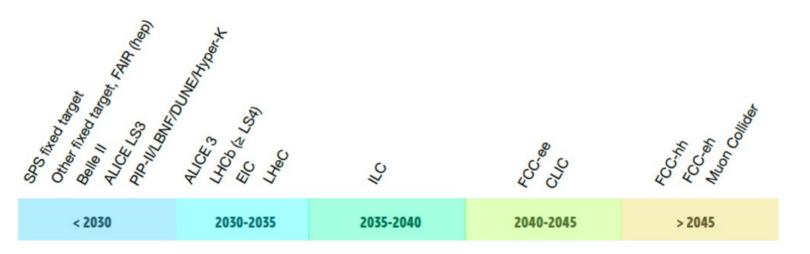
Muon Collider

Calorimetry Overview Table

Project	~Earliest Start of data taking	Current Calorimeter options						
		Solid state	Scintilling tiles/strips	Crystals	Fibre based r/o (including DR)	Gaseous	Liquid Noble Gas	
HL-LHC (>LS4)	2030			~	~			
SuperKEKb (>2030)	2030			~				
ILC	2035	v	v			v		
CLIC	2045	~	~					
CEPC	2035	v	v	v	v	v	v	
FCC-ee	2045	~	~	v	v	v	 	
EiC	2030		v	v	v			
FCC-hh (eh)	>2050	~	~				 	
Muon Collider	> 2050	~	~	v	~	~		
Fixed target	"continous"		~	v	~		 	
Neutrino Exp.	2030		~				(~)	

in most cases, final choices still to be made

6th FCC Physics workshop – Krakow, 24.01.2023



• ECFA R&D Roadmap

- CERN-ESU-017 https://cds.cern.ch/record/2784893
- 248 pages full text and 8 page synopsis
- Endorsed by ECFA and presented to CERN Council in December 2021

Roadmap identified:

- General Strategic Recommendations (GSRs)
- Detector R&D Themes (DRDTs) per task-force topic
- Concrete R&D Tasks
- Timescale of projects as approved by European Lab Director Group (LDG)

guiding principle: project realisation must NOT be delayed by detectors

6th FCC Physics workshop – Krakow, 24.01.2023

THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP

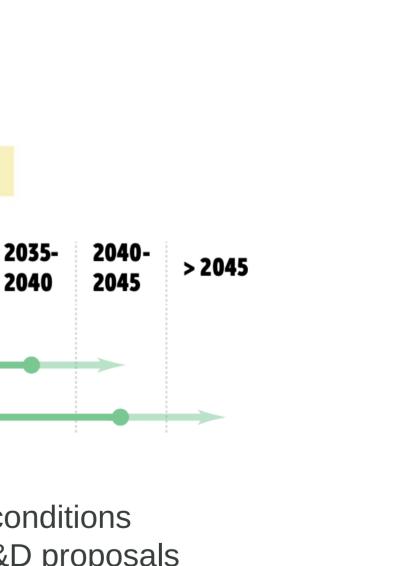
The European Committee for Future Accelerators Detector R&D Roadmap Process Group

5

Future Facilities and DRDTs for Calorimetry

				. –
Calorimetry	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution		
	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods	 	
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments		

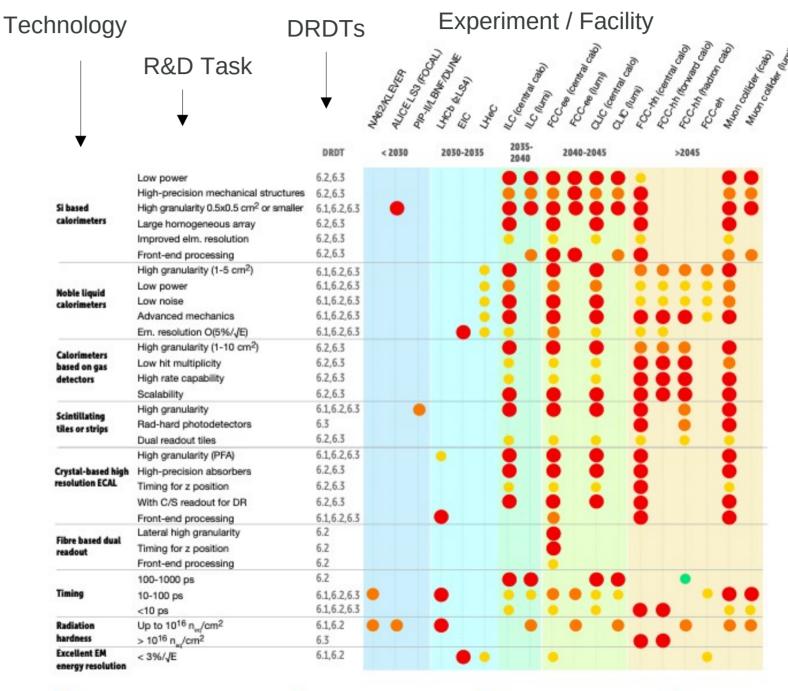
- DRDTs and (provisional) time scale of facilities set high-level boundary conditions
- Both as well as GSRs should be taken into account when formulating R&D proposals few details in next slides



2030-

2035

< 2030



6

- Si based calorimeters
- Liquid Noble Gas calorimeters
- Calorimeters based on gas detectors
- Scintillating tiles and strips
- Crystal based high-resolution ECal.s
- Fibre-based dual readout
- R&D should in particular enable
 - Precision timing
 - Radiation hardness
 - High granularity
- R&D Tasks grouped into
 - Must happen
 - Important
 - Desirable
 - Already met

Must happen or main physics goals cannot be met

Important to meet several physics goals

Desirable to enhance physics reach

6th FCC Physics workshop – Krakow, 24.01.2023

7

R&D needs being met

- GSR1- Supporting R&D facilitiesMore details in:GSR2- Engineering support for detector R&DEUROPEAN STR
DETEGSR3- Specific software for instrumentationCSR4- International coordination and organisation of R&D activitiesGSR5- Distributed R&D activities with centralised facilities
- GSR6- Establish long-term strategic funding programmes
- GSR7- Blue-sky R&D
- GSR 8 Attract, nurture, recognise and sustain the careers of R&D experts
- GSR 9 Industrial partnerships
- GSR 10 Open Science

CERN/SPC/1190 EUROPEAN STRATEGY FOR PARTICLE PHYSICS DETECTOR R&D ROADMAP

- European projects such as AIDAinnova and EURO-Labs
- CERN EP-Programme
- Existing collaborations (LHC Experiments, Belle II, DUNE, NA62, KLEVER, ...)
- R&D Collaborations and communities (CALICE, FCAL, Crystal Clear, GranuLAr, CalVision, ...)
- Proto collaborations (ILD, SiD, CLICdp, FCC Detector with LAr, IDEA, EpIC, ...)

 \rightarrow ongoing DRD process must successfully integrate existing R&D activities

- Entry point, "DRD Calo indico page": https://indico.cern.ch/event/1213733
 - Information on important events and access to relevant documents
 - Note also the Q&A doc (still empty) \rightarrow please, use it if you need clarifications or details
- First Community Meeting on January 12th, 2023 \rightarrow more than 100 people participating https://indico.cern.ch/event/1212696
 - Presented actual plans for different key technologies
 - Got feedback/input on roadmap process and implementation
 - Very interesting and positive attitude, community looks very open to collaborate
 - Conveners and speakers also entry points for people/groups willing to join

FCFA

- Proposal phase until July 1^s, 2023:
 - Collect input (until April 1st)
 - Proposal team will contact stakeholders
 - Contact persons assigned for different topics
 - 2nd community meeting around middle of April
 - Presentation of input proposals (w/o disclosing confidential information)
 - Presentation of proposed WP Structure of DRD Calorimetry \rightarrow NOT reinvent wheel: learn from existing R&D collaboration experience
 - Input proposals condensed into DRD Calorimetry Proposal until (about) June 1st
 - Further iterations with stakeholders, community and higher level bodies

- Proposal Team: on first approach, TF6+ Task Force
- Stakeholders:

existing R&D collaborations and communities in coordination with funding agencies

• Draft of guidelines for pre-proposals and final proposal already exists still open for comments and modifications \rightarrow please, take care: feedback more than welcome

what follows oriented at that draft

FCFA

- Content
 - Brief description of R&D project including reference to roadmap
 - Where applicable, sketch of synergies inside and outside of DRD Calorimetry
 - "External needs" like test facilities, software, etc.
- Important formalities
 - Tables with Deliverables (and likely Milestones)
 - List of associated institutes (confidential information)
 - European as well as non-European groups
 - Overview on needed and (eventually) existing resources (confidential information)
 - again should cover both European and non-European resources
 - Length of these input proposals O(5-10) pages
- Proposal with plans and general overview on resources (20 pages for DRD Calorimetry)

Present breakdown: three main R&D packages:

- Sandwich calorimeters with fully embedded electronics
- Liquid-noble-gas calorimeters (was only for FCC-hh, now looking also at FCC-ee)
- Optical, scintillation-based, sampling and homogeneous calorimeters all consolidated historical activities

Many open challenges over different time scales \rightarrow depend on physics case and machine

Many common issues \rightarrow pretty long shopping list ...

Many different specific issues \rightarrow not entering in any details

Many synergies with (or dependence on) other TFs \rightarrow need transversal collaboration(s) calorimeters both at top and bottom of chain

Personal comment: very positive and constructive attitude of all players DRD process looks to be felt as opportunity to foster progress

High granularity \rightarrow critical for PFA (but not only)

Timing resolution \rightarrow critical for hadron colliders (but not only)

Hadronic energy resolution \rightarrow critical for lepton colliders

FCFA Common issues – lot of room for collaboration

New active materials:

- Fast, high-density, low-cost, scintillating materials
- Fast and rad-hard WLS fibres

Sensors + FF elx:

- Low x-talk, low-noise, low-power budget
- High granularity \rightarrow high integration \rightarrow embedded FE elx
- High-precision timing \rightarrow from O(100) ps down to O(10) ps
- Radiation hardness
- Si/GaAs sensors: high integration, very-front-end integration, sensor bonding
- CMOS sensors: MAPS, digital SiPMs
- Photosensor architecture: MCP-PMTs, SiPMs, LGADs, ...,
- Photosensor performance: dynamic range, light yield, timing, UV sensitivity, ...
- ASICs: architecture, timing performance
- Components / connectors reliability
- High data rate \rightarrow on-chip processing (DNN) for data selection and compression

ECFA Common issues – lot of room for collaboration (2)

Mechanics / production issues:

- Low-material budget
- High mechanical precision
- Industrialisation, engineering, scalability \rightarrow relation w/ industry
- High-density absorber (e.g. W) production \rightarrow (e.g.) 3D-printing

Services:

- Cooling
- Powering and control
- Clock distribution for O(10) ps timing

Others:

- Beam test infrastructure, setup & DAQ software (EUDAQ)
- Beam line features + common beam requests
- MC samples \rightarrow common benchmarks
- Software tools (DD4hep, EDM4hep, Key4hep, ...), event-data format (?)
- Test benches, but also ... PFA and dual readout

add transversal package to cover overarching topics?

With respect to other DRDs:

- Gaseous Detectors (TF1) for hadron calorimetry
- Solid State Detectors (TF3) for CMOS sensors
- PID and Photon Detectors (TF4) for all optical readout calorimetry
- Electronics and On-detector Processing (TF7)
- Integration (TF8) for cooling

Other fields: above all, medical imaging

Several Phase-II and Phase-III HL-LHC upgrades:

CMS ECAL, LHCb ECal, ALICE FoCal

and also:

LUXE (XFEL), BELLE II ECal, EIC EEMCal

but ... all, except FoCal, EM calorimeters

6th FCC Physics workshop - Krakow, 24.01.2023

High-performance hadron calorimetry only relevant for future Higgs/EWK factories?

Only rate capability and radiation hardness look to matter for hadron colliders (not surprising)

We urgently **need** any linear or circular e+e- collider to test our new fantastic hadron calorimeters (don't tell the funding agencies)

6th FCC Physics workshop – Krakow, 24.01.2023

- Implementation of ECFA Detector R&D Roadmap over this year
- Strategic DRDs expected to be in place within end of year \rightarrow bottom–up process
- Implementation built upon confirmed panels and established detector R&D Communities
 - However, no real blueprint over it
 - Each DRD will decide on its own structure
 - Need to build attractive R&D programme to motivate joining it
 - Get non-European people/groups fully on board interest looks to exist
 - Many synergies to be exploited both internally to Calo DRD and wrt other DRDs
 - Continuous and effective communication is crucial
 - Must be sure no one is forgotten and no important topic is missed
- Communication:
 - News will be spread through mailing function of DRD-Calo indico page
 - Setting up dedicated DRD-Calo work environment

