

The ECFA Detector R&D Roadmap:

gaseous detector

Anna Colaleo University and INFN -Bari

Detector Roadmap TF1 organization

TF1 Gaseous Detectors team

Conveners: Anna Colaleo (University and INFN Bari), Leszek Ropelewski (CERN)

Experts: Klaus Dehmelt (SUNY), Barbara Liberti (INFN - Tor Vergata), Maxim Titov (CEA Paris-Saclay), Joao Veloso (University of Aveiro)

Link to the coordination team : Silvia Dalla Torre (INFN Trieste)

Process and Timeline

Expert & Community Consultation

Feb 2021

Collection of requirements of future facilities & projects

Organisation for Consultation of Relevant Communities

Input from future facilities

Session I (in general collider oriented), afternoon 19 February 2021: Input Session I

•Talk I: HL-LHC (incl. flavour physics)

•Talk II: strong interactions at future colliders

•Talk III: strong interactions at future fixed target facilities

•Talk IV: future linear high energy e+e- machines

•Talk V: future circular high energy e+e- machines

•Talk VI: FCC-hh

•Talk VII: muon collider

Session II (in general non-collider oriented) afternoon 22 February 2021: Input Session II

•Talk I : neutrino short and long baseline

•Talk II: astro-particle neutrinos

•Talk III: DM-like facilities

•Talk IV: decay facilities

•Talk V: low energy facilities

The full list of future facilities can be found in the Roadmap Mandate document.

Process and Timeline

Expert & Community Consultation

Feb 2021

Collection of requirements of future facilities & projects

Feb/March 2021 Questionnaires of Task Forces to national contacts*

Task Forces liaise with experts in • ECFA countries

• ECFA countries

adjacent disciplines

industry

March-May 2021 Open Symposia **

Organisation for Consultation of Relevant Communities

TF1 Symposium

Technologies: overview, limitations and perspectives.

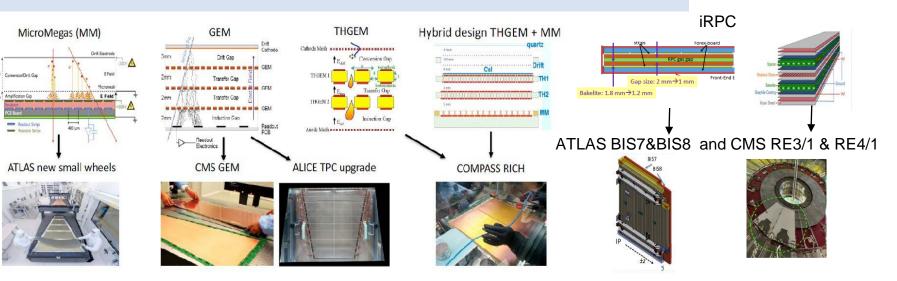
- o MPGD: GEM, Micromegas, THGEM, uRWELL, and other ongoing developments
- RPC, MRPC, and other ongoing developments,
- o Drift chambers, straw tubes, TGC, CSC, and other wire chambers
- $\circ~$ PID: TPC, TRD, RICH and other large area detectors

Future applications.

- Tracking and muon detection at future colliders
- o TPCs at future lepton and lepton-hadron colliders (TPCs, drift chambers, large volume gaseous detectors)
- Nuclear physics applications (tracking, extremely low mass detectors, photon detection, TRD, neutron detection)
- o Recoils imaging for DM, neutrino, and BSM physics applications (TPCs variations, optical readout)
- o Calorimetry (RPC, MPGD) at future colliders

Challenges and new developments.

- o Detector stability (ageing, discharge issues) and rate capability: resistive electrodes
- Novel readout electrodes, optical readout, hybrids with ASICS
- Precise timing detectors
- IBF, photocathode stability and alternatives (including solid converters and nanotech)
- Precision manufacturing techniques (electrical.mechanical properties), additive manufacturing and new materials (low mass, radio-purity)
- Eco gas mixtures and mitigations procedures for GHG gas (recirculation, recuperation etc.)


Applications beyond fundamental research. Development tools and R&D environment.

- o Electronics (front-end and DAQ) for gaseous detectors R&D
- Software tools for detector physics simulations
- $\circ~$ Infrastructures development, testing and production facilities
- $\circ~$ Relations with industry
- Networking collaborations, technology dissemination and training

https://indico.cern.ch/event/999799/

The wide family of gaseous detectors

- Upgrades at the LHC for tracking, muon spectroscopy and triggering have taken advantage of the renaissance in gaseous detectors (*ex.* MPGDs, RPC.)
- New generation of TPCs use MPGD-based readout:
 e.g. ALICE Upgrade, T2K, ILC CepC

- Gaseous detectors offer very competitive timing through e.g.
 - Multi-gap Resistive Plate Chambers (down to 60 ps time resolution) (Alice TOF)
 - An enabling emerging R&D: Micromegas with timing (PICOSEC concept)

Positive Ion Detection COMPASS RICHsRPC (Bencivenni Charge transfer properties Scream mm (M. Chefdeville) in gaseous TPC Compass through graphene **3D printed THGEM** single gap semi-conductor (L.Arazi) (F. Brunbauer) (P Thuiner ~1 mm PICOSEC mm uRWELL (G. Bencivenni) (PICOSEC coll Nanodiamond Bubble-GridPix (J photocathode (A assisted ALICE MDD **RCC** Bencivenni Liquid Hole-- Preampiller - DAG Small pad resistive mm (M. lodice) **Multipliers** (E. Erdal prototype (M. Cortes Straw tube components (for PANDA-STT [1]) 6th FCC workshop – A. Colaleo

New Technologies, new architectures and hybridization of technologies

The wide family of gaseous detectors

Summary of R&D Challenges for the different applications

Figure 1.8:

Muon System	Inner and Central tracking	Calorimetry	Photon detection	TOF	Rare decays
	Drift chambers		• Preserve the photocathode	• Uniform rate capability	• Radio-purity of the
large area up to integrated charges of	• High rate, unique volume, high granularity, low	the large area and dynamic	efficiency by IBF and more robust	and time resolution over	materials
hundreds of C/cm2:	mass	energy range;	photoconverters;	large detector area;	 Low background
- aging issues and discharges;	• Hydrocarbon-free mixture for long-term and	• Optimization of weights for	• Gas radiator: alternative to CF4	• New material for high rate	 High granularity
• Operation in a stable and efficient	high-rate operation	different thresholds in digital	• Gas tightness	(low resistivity, radiation	 For large volume
manner with incident particle flows	• Prove the cluster counting principle with the related	calorimeters	• Very low noise when coupling	hardness);	detectors: transparency over
up to ~ 10 MHz/cm2:	electronics	• Rate capability in detectors	large capacitance;	- uniform gas distribution;	large distance
- miniaturization of readout	• Mechanics: new wiring procedure, new wire	based on resistive materials:	• Large dynamic range of the FEE;	- thinner structures:	 Pressure stability and
elements needed to keep occupancy	materials	resistivity uniformity, discharge	• Separate the TR radiation and the	mechanical stability and	control
low;	• Integration: accessibility for repairing.	issue at high rate and in large	ionization process	uniformity;	• Electronics with large
• Manufacturing, on an industrial		area detector;	• InTDD use of cluster counting	• Eco-gas mixture;	dynamic range and flexible
scale, large detectors at low cost, by	TPC	• R&D on sub-ns in active	technique and improve it by means	• Electronics: Low noise,	configuration.
means of a process of technological	• R&D on detector sensors to suppress the IBF ratio	elements: resolution stables over		fast rise time, sensitive to	• Self-trigger capability
transfer to the industry and identifies	• Optimize IBF together with energy resolution	wide range of fluxes;	_	small charge;	• Low noise electronics
processes transferable to industries	• Gain optimization: IBF, discharge stability	• Gas homogeneity and stable		 Possibly optical readout; 	• Fast electronics
• Identification of eco-friendly gas	• Uniformity of the response of the sensors	over time.		• Precise clock distribution	 Optical readout
mixture and mitigation of the issue	• Gas mixture: stability, drift velocity, ion mobility,	• Eco-friendly gas mixture for		and synchronization over	-
related to the operation with high	aging	RPC;		large area.	
WGP gas mixture:	• Influence of Magnetic field on IBF)	• Stability of the gas gain: fast		_	
- gas tightness; gas recuperation	• High spatial resolution	monitoring of gas mixture and			
system; accessibility for repairing.	• Very low material budget (few %)	environmental conditions;			
• Study of resistive materials (RPC	• Mechanics: thickness minimization but robust for	Mechanics:			
and MPGD):	precise electrical properties for stable drift velocity.	- large area needed to avoid			
- higher gain in a single	• Integration: cooling of electronics.	dead zone: limitation on size and			
multiplication layer, with a		planarity of PCB is an issue.			
remarkable advantage for assembly,	Straw chambers	- multi-gap with ultra-thin			
mass production and cost.	• Ultra-long and thin film tubes;	modules: very thin layer of glass			
- new material and production	• "Smart" designs: self-stabilized straw module,	and HPL electrodes, gas gap			
techniques for resistive layers for	compensating relaxation;	thickness uniformity few micron			
increasing the rate capability	• Small diameter for faster timing, less occupancy,				
• Thinner layers and mechanical	high rate capability;				
precision over large area	• Reduced drift time, hit leading times and trailing				
_	time resolutions, with dedicated R&D on the				
	electronics;				
	• PID by dE/dx with "standard" time readout and				
	time-over-threshold;				
	• 4D-measurement: 3D-space and (offline) track time;				
	• Over-pressurized tubes in vacuum: control the				
	leakage rate to maintain the shape.				

Report and timeline

 Timescale of projects as approved by European Lab Director Group (LDG)

The Roadmap has identified

• Set of detector R&D areas which are required if the physics programmes of experiments at these facilities are not to be compromised.

Guiding principle: Project realisation must not be delayed by detectors R&D

- Detector R&D Themes (DRDT) for each of the taskforce topics
- General Strategic Recommendations (GSR)



Figure 3: Large Accelerator Based Facility/Experiment Earliest Feasible Start Dates.

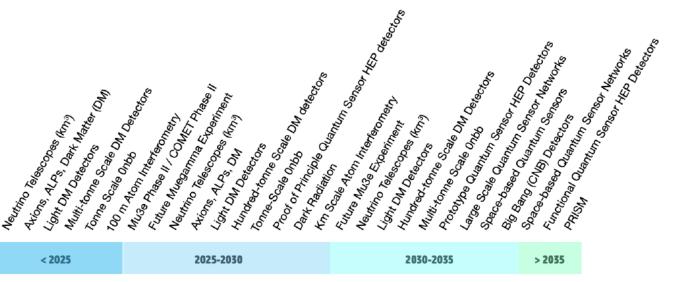
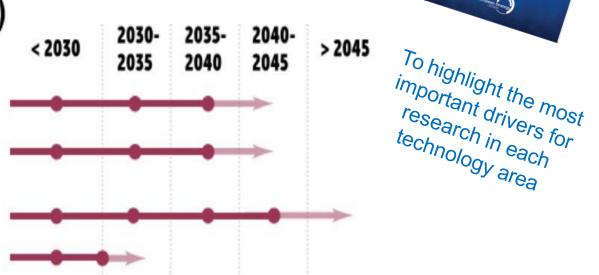


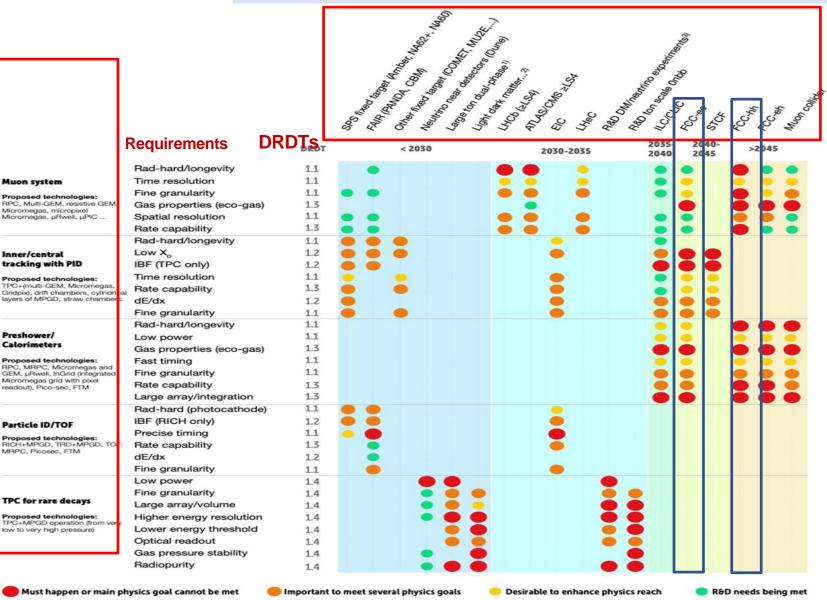
Figure 4: (Representative) Smaller Accelerator and Non-Accelerator Based Experiments Start Dates (*not intended to be at all an exhaustive list*).


6th FCC workshop – A. Colaleo

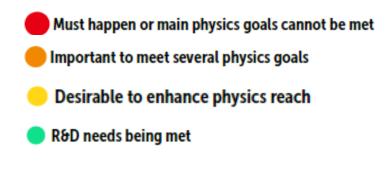
DRD1 Themes and timeline

The DRDTs of Task Force 1 Gaseous detectors

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)


- DRDT 1.1 Improve time and spatial resolution for gaseous detectors with long-term stability
- DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability Gaseous in large volumes with very low material budget and different read-out schemes
 - DRDT 1.3 Develop environmentally friendly gaseous detectors for very large areas with high-rate capability
 - DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

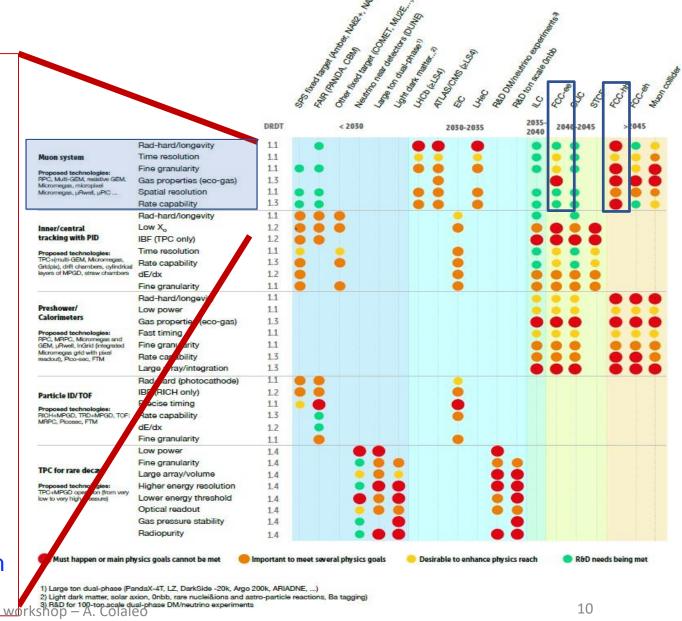
- The faded region acknowledges the typical time needed between the completion of the R&D phase and the readiness of an experiment at a given facility.
- Stepping stones are shown to represent the R&D needs of facilities intermediate in time.
- It should be emphasised that the future beyond the end of the arrows is simply not yet defined, not that there is an expectation that R&D for the further future beyond that point will not be needed.


Stand Strang

Gaseous detectors R&Ds timeline

It illustrate the way requirements could evolve over time to help define the planning for the corresponding detector R&D to ensure the main physics goals of the updated strategy for particle physics do not risk being compromised by detector readiness

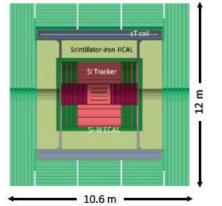
Note the dots relate to the importance to the listed facilities of the R&D activity not the intensity of effort needed to meet these requirements


Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE ...)
 Light dark matter, solar axion, 0nbb, rare nuclei&ions and astroparticle reactions, Ba tagging)
 R&D for 100-ton scale dual-phase DM/neutrino experiments

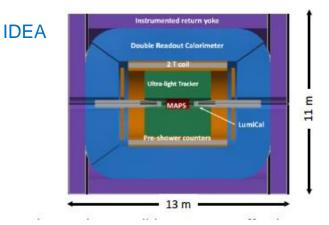
Muon System

Main drivers from facilities:

Muon systems:


- radiation hardness, longevity and stability
 - O(100 C/cm²)
 - relevance of discharge studies
- large area (low cost),
- time resolution (< 1 ns)
 - mitigate uncorrelated background and pile-up
- fine granularity
 - Pile-up and space resolution
 - space resolution → momentum resolution
- rate capability
 - O (10MHz/ cm²)
 - Resistive materials
- FACILITIES: HL-LHC, EW-Higgs-Top facilities, Mucollider, hadron physics (EIC and fix target), FCC-hh
 TECHNOLOGIES: MPGDs and new (M)RPC

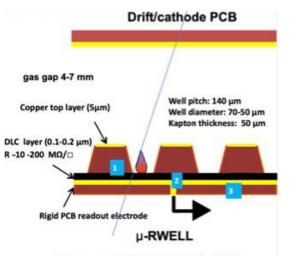
Muon system: FCC-ee


M. Dam, M. Titov

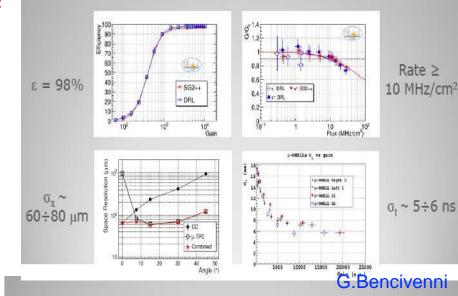
CLD

Based on CLIC detector design; profits from technology developments carried out for LCs

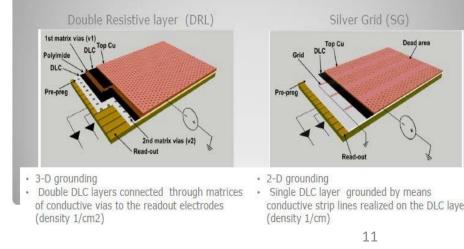
- All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system



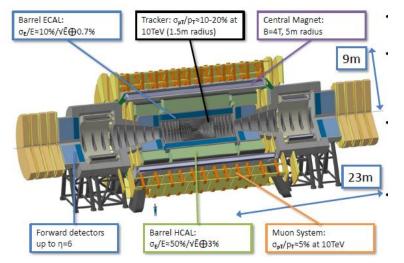
New, innovative, possibly more cost-effective concept


- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

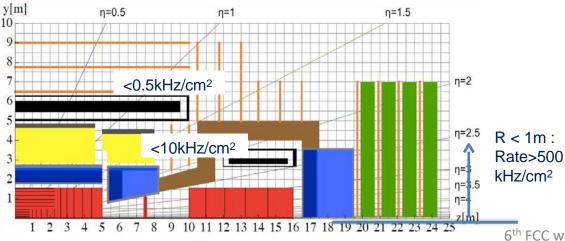
Muon system in instrumented return yoke

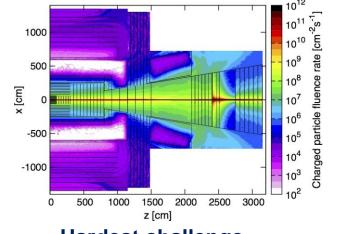

- 3-7 layers considered: 3000-6000 m²
- Proposed technologies
 - RPC (30 × 30 mm² cells)
 - µRWell chambers (1.5 × 500 mm² cells)
 - Also for IDEA pre-shower detector
 - Ongoing R&D work

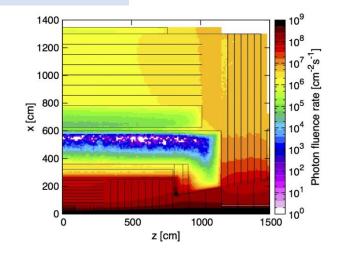
G. Bencivenni et al., 2015_JINST_10_P02008 6th FCC workshop – A. Colaleo



The purpose of these HR versions is to reduce the distance to be "travelled" by the charge towards the ground




Muon system for FCC-hh


M. Dam, M. Aleksa, M. Titov

Barrel Muon system (2 layers) : 2000 m² total Endcap Muon System (2 layers): 500 m² total Forward Muon System: (4 layers): 320 m² total

Hardest challenge

- pp collisions at 100TeV (FCC-hh)
- Pileup: 1000 events/bunch crossing \rightarrow spatial resolution, timing

Muon barrel and endcap

- Charged rates ~ 5x10⁴ cm⁻²s⁻¹
- photon rates ~ 5x10⁶⁻⁸ cm⁻²s⁻¹
- N fluence $\sim 10^{14}$ cm⁻² \rightarrow shielding can mitigate effect
- Current muon system gas detector technology will work for most of the FCC detector area
- Forward region (r < 1 m) → more R&D would be needed

Muon system

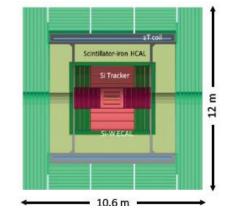
Figure 1.2:

Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	RPC, Multi-GEM, resistive-GEM, Micromegas, micro-pixel Micromegas, μ-RWELL, μ-PIC	Ageing and radiation hard, large area, rate capability, space and time resolution, miniaturisation of readout, eco-gases, spark-free, low cost	(LHCb): Max. rate: 900 kHz/cm ² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm ² (10 years)
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	GEM, μ-RWELL, Micromegas, RPC	Stability, low cost, space resolution, large area, eco-gases	(IDEA): Max. rate: 10 kHz/cm ² Spatial resolution: ~60-80 μm Time resolution: O(ns) Radiation hardness: <100 mC/cm ²
Muon collider	Triple-GEM, μ-RWELL, Micromegas, RPC, MRPC	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Fluxes: > 2 MHz/cm ² ($\theta < 8^{\circ}$) < 2 kHz/cm ² (for $\theta > 12^{\circ}$) Spatial resolution: ~100 μ m Time resolution: sub-ns Radiation hardness: < C/cm ²
Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)	Micromegas, GEM, RPC	High rate capability, good spatial resolution, radiation hard, eco-gases, self-triggered front-end electronics	(CBM@FAIR): Max rate: <500 kHz/cm ² Spatial resolution: < 1 mm Time resolution: ~ 15 ns Radiation hardness: 10 ¹³ neq/cm ² /year
FCC-hh (100 TeV hadron collider)	GEM, THGEM, μ-RWELL, Micromegas, RPC, FTM	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	Max. rate 500 Hz/cm ² Spatial resolution = 50 μ m Angular resolution = 70 μ rad (η =0) to get $\Delta p/p \le 10\%$ up to 20 TeV/c 13

Inner/central tracking

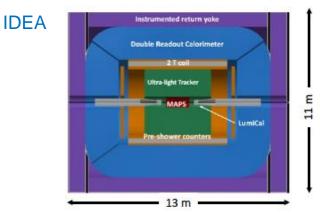
Main drivers from facilities:

Inner/central tracking with PID capabilities:


- radiation hardness, longevity and stability
- Low X₀
 - New materials as carbon monofilament
- Low IBF (TPC only)
- Time resolution
- dE/dx and Cluster counting:
 - Grid-Pix, electronics
- fine granularity
- rate capability
- FACILITIES: SCTF, CepC and FCC-ee, hadron physics, rare decays and rare events at accelerators, v-physics
- TECHNOLOGIES: TPC, large volume drift chambers, straw tubes, set of co-axial cylindrical MPGDs

Gaseous central tracking: FCC-ee

M.Dam, P.Gasik

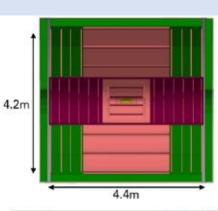


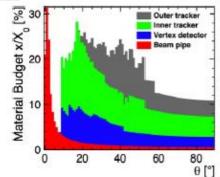
Based on CLIC detector design; profits from technology developments carried out for LCs

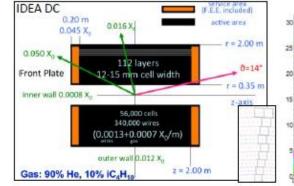
- · All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system

CLD

New, innovative, possibly more cost-effective concept

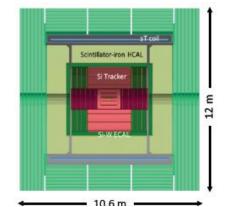

- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system


Two solutions under study


- CLD: All silicon pixel (innermost) + strips
 - = Inner: 3 (7) barrel (fwd) layers (1% Xo each)
 - Outer: 3 (4) barrel (fwd) layers (1% X₀ each)
 - Separated by support tube (2.5% X₀)
- IDEA: Extremely transparent Drift Chamber
 - GAS: 90% He 10% iC4H10
 - Radius 0.35 2.00 m
 - Total thickness: 1.6% of X₀ at 90°
 - Tungsten wires dominant contribution
 - Full system includes Si VXTand Si "wrapper"

What about a TPC?

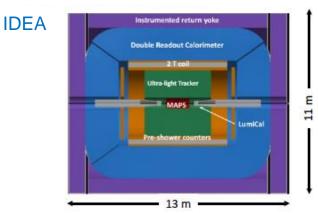
- Very high physics rate (70 kHz)
- B field limited to 2 Tesla
- Considered for CEPC, but having difficulties...


IDEA: Material vs. cos(0)

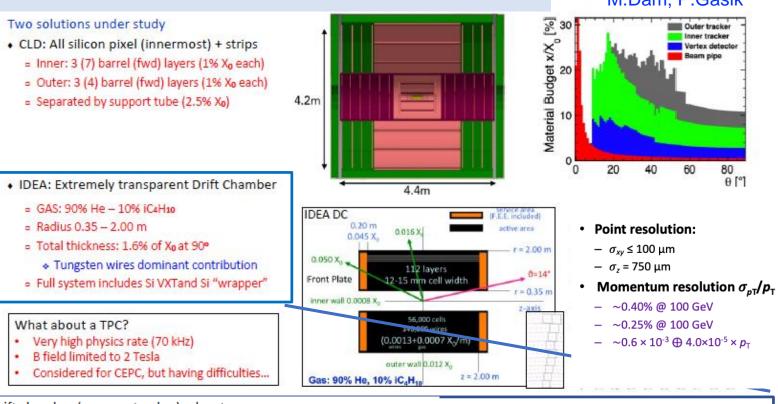
Gaseous tracking: FCC-ee

M.Dam, P.Gasik

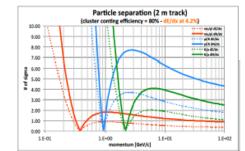
16

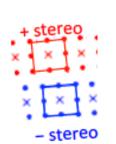


Based on CLIC detector design; profits from technology developments carried out for LCs


- · All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system

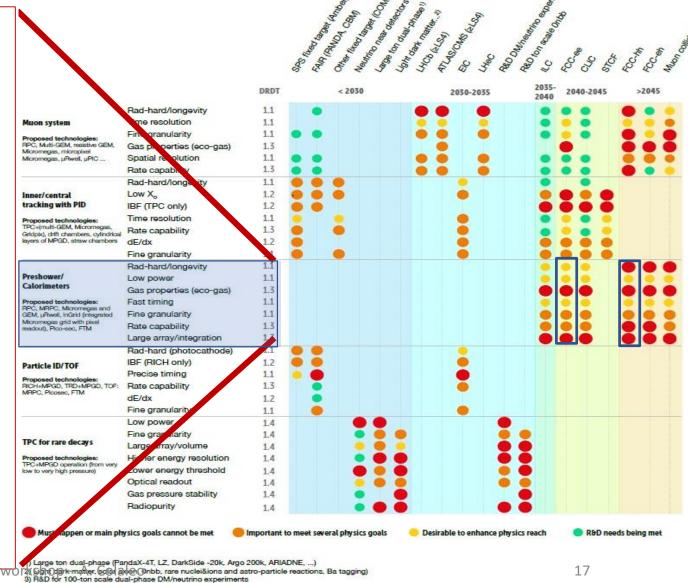
CLD




New, innovative, possibly more cost-effective concept

- Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

- · Drift chamber (gaseous tracker) advantages
 - Extremely transparent: minimal multiple scattering and secondary interactions
 - Continous tracking: reconstruction of far-detached vertices (K⁰_S, Λ, BSM_LLPs)
 - Particle separation via dE/dx or cluster counting (dN/dx)
 - dE/dx much exploited in LEP analyses



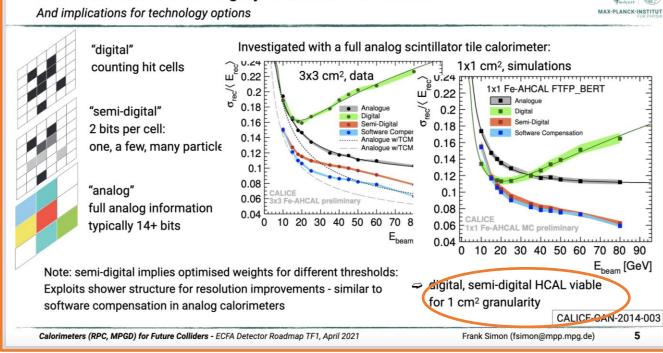
High wire densities prevent the use of feed-through, needing novel approaches to the wiring procedures

Calorimeter

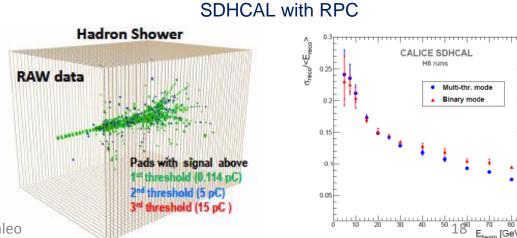
- Main drivers from facilities:
- Pre-shower and calorimetry:
- CONTEXT: particle flow (PF) concept
- DHCAL/SDHCAL approaches
- radiation hardness, longevity and stability
 - Gas property (eco-gasses)
- Low power
- Fast timing, goal: 5D calorimeters (time development along the shower) → electronics
- fine granularity
- rate capability
- Integration aspects:
 - Thin layers with integrated services
 - Large arrays: 10-100M ch.s, 10 k m² sensor surface
- FACILITIES: colliders: FCCee, mu, e-h, FCC-hh
- TECHNOLOGIES: MPGDs (PicoSec, FTM), RPCs

Calorimeter

Gaseous detectors provide:


- radiation hard detector
- high granularity (σ_{xy} = 50um, σ_t = 5ns) at low cost
- good energy resolution, imaging capability background rejection:
 - energy resolution with SDHCAL as good as AHCAL with software compensation

New handle: Fast- timing


- If pico-second-time and energy information are available at each point along the track ⇒ 5D imaging reconstruction
 - → Technologies: MRPC, PicoSec, FTM

Lot of work done within CALICE collaboration:

- AHCAL Scint+SiPM 3 x 3 cm² granularity
- DHCAL glass RPC 1 x 1 cm² granularity
- SDHCAL RPC/MICROMEGAS/RPWELL1 x 1 cm² granularity

Readout Schemes of Highly Granular Calorimeters

F. Simon

6th FCC workshop – A. Colaleo

Roadmap implementation: towards a DRD1 Collaboration

- DRD1 formation promoted by the TF1 conveners : Anna Colaleo and Leszek Ropelevski
- Taking advantage of RD51 experience
- A dedicated working group has been formed:
 - > ECFA TF1 Conveners: Anna Colaleo (Univ. and INFN-Bari), Leszek Ropelewski (CERN);
 - > Other TF1 Members: Klaus Dehmelt (Stony Brook Univ.-SUNY), João Veloso (Univ. of Aveiro)
 - ECFA Coordinators Group Member: Silvia Dalla Torre (INFN Trieste)
 - > MPGDs: Eraldo Oliveri (CERN), Fulvio Tessarotto (INFN-Trieste), Maxim Titov (CEA Paris-Saclay)
 - > RPCs: Ingo Deppner (Univ. Heidelberg), Giuseppe Iaselli (Politecnico & INFN-Bari), Barbara Liberti (INFN Roma 2)
 - > **TPCs:** Esther Ferrer Ribas (IRFU/CEA), Jochen Kaminski (University of Bonn)
 - > Large volume detectors: Marco Panareo (Univ. and INFN-Lecce), Francesco Renga (INFN-Roma I)
 - > Straw tubes, TGC, CSC, drift chambers, and other wire detectors: Peter Wintz (IKP, FZ Jülich)
 - > Infrastructure, R&D programs (CERN EPR&D, AIDAinnova): Roberto Guida (CERN), Beatrice Mandelli (CERN)
 - > Administrative support: Hans Taureg (University of Bonn), Florian Brunbauer (CERN)
- a major effort: reaching out to as many major groups in the field as possible.

Towards a DRD1 Structure: proposal

Keep RD51 structure in WGs including alignment with the scientific program of the ECFA roadmap, looking more generally to future facilities challenges and specifically to the ECFA roadmap selected Detector RD Themes (DRDT).

WG1: Technologies

Includes experimental detector physics aspects

•MPGDs

•RPCs, MRPCs

Large Volume Detectors (drift chambers, TPCs)
Straw tubes, TGC, CSC, drift chambers, and other wire detectors
New amplifying structures

WG2: Applications

Full alignment with the ECFA detector R&D roadmap

•Muon systems

- •Inner and central tracking with particle identification capability
- Calorimetry
- Photon detection
- •Time of Flight systems
- •TPCs for rare event searches
- •Precision experiments
- Straw chambers in vacuum

Fundamental research applications beyond HEP
Medical and industrial applications

WG3: Gas and material studies

Eco-gases searches
Light emission in gases
Ageing
Radiation hardness
Light (low material budget) materials
Resistive electrodes
Precise mechanics
Photocathodes (novel, ageing, protection)
New types of wires (coated carbon monofilaments)
Solid converters
Novel materials (nanomaterials)

WG4: Detector physics, simulations, and software tools

Detector properties studies (simulations)
Software tools development and maintenance
Detector design tools
Gas cross-section data bases maintenance

WG5: Electronics for gaseous detectors

•Readout electronics (SRS, ASICs, fast electronics, pixel, and optical readout)

•HV systems FCC workshop – A. Colaleo •Dedicated lab instrumentation

WG6: Detector production

•CERN MPT workshop

- •Saclay MPGD workshop
- •Novel detector production methods
- Industrialization

WG7: Common test facilities

Incudes development of common detector characterization standards

•General purpose detector development labs

- •Ageing facilities
- Irradiation facilities
- Gas studies facilities
- •Test beam facility

WG8:Training and dissemination

- Schools and trainings
- Topical workshops
- Knowledge transfer

•(Young) Researcher Career

Towards a DRD1 Collaboration

- Help to pull the communities together over the coming months to converge on the DRD1 organisation and proposals
- Collecting the contact persons for each institution interested to join the collaboration
- A survey sent to the institute contact persons to get feedback from the community (deadline 15 February)
- Community workshop planned at CERN on 1 3 March 2023.
 - establish the DRD1 community and begin preparing a short proposal outlining the path (including milestones, resources, and infrastructures available and needed) to fulfilling and developing the technological goals outlined in the ECFA R&D roadmap for the gaseous detector.
 - We will invite all people registered at https://indico.cern.ch/event/1214405/manage/registration/

Please feel free to contact me or any member of the DRD1 working group for any question