4D tracking at FCC

An overview of the present activities aimed at developing trackers with excellent spatial and temporal resolutions for FCC

- Extensive collaborations within the RD50 CERN collaboration
- 4D tracking is a key strategic development of the ECFA roadmap
 - RD50, RD42, MAPS, ... ==> DRD3 R&D community

4D tracking:

Where, when, how the R&D will take place?

ECFD Roadmap: DRDT 3.2 - Sensors for 4D-tracking.

- Understand the ultimate limit of precision timing in sensors with and without internal multiplication;
- Develop sensors with internal multiplication with 100% fill factors and pixel-like pitch;
- Investigate the production of sensors with internal multiplication in a monolithic design;
- Increase radiation resistance, push the limit of 3D sensors and explore LGAD and MAPS capabilities;
- Investigate the use of BiCMOS MAPS, exploiting the properties of SiGe.

DRD3 task force: implementation of the ECFA roadmap

Town meeting: March 22-23rd.

Join DRD3 and participate!

Future R&D in 4D tracking

In the following slides, I present a few R&D paths that will be explored in DRD3

By "**4D tracking**" we mean the process of assigning a spatial and a temporal coordinate to a hit.

Timing can be available at different levels of the event reconstruction:

) Timing in a single point (timing layer ATLAS,CMS)

By "**4D tracking**" we mean the process of assigning a spatial and a temporal coordinate to a hit.

Timing can be available at different levels of the event reconstruction:

Timing in a single point (timing layer ATLAS,CMS)

2) Timing at some points along the track

By "**4D tracking**" we mean the process of assigning a spatial and a temporal coordinate to a hit.

Timing can be available at different levels of the event reconstruction:

) Timing in a single point (timing layer ATLAS,CMS)

- 2) Timing at some points along the track
- 3) Timing at each point along the track

By "**4D tracking**" we mean the process of assigning a spatial and a temporal coordinate to a hit.

Timing can be available at different levels of the event reconstruction:

Many timing coordinates per track yield to better performing detectors, but require much more complex read-out systems.

Some projects will be perfectly fine with having a limited set of timing points

-) Timing in a single point (timing layer ATLAS,CMS)
- 2) Timing at some points along the track
- 3) Timing at each point along the track

Interplay of power, pixel size, and electronics

Personal view:

- The electronics design is much harder than the design of the sensors.
 - As the community gain experience from present projects, in the next few years, we will witness strong evolution of the electronics.
- Power/cooling will determine:
 - The architecture of 4D tracking detectors (how many layers will be 4D and how many will be 3D)
 - The pixel size and the temporal precisions.

Present sensors for 4D trackers

Two different environments: vertex and tracking

From a technological point of view, in a generic tracking system, <u>the vertex detector has</u> <u>different needs than the rest of the tracking:</u> In particular:

- Very high occupancy
 => Small pixels
- Highest radiation
 - ==> fluence >5E15 n/cm²

These two requirements are well-matched by the capabilities of 3D detectors:

- Very radiation hard, no built-in amplification, (so they should be rather thick)
- Require small pixels (25 x 25 um² or 50 x 50 um²) to have fast signal and small capacitance.

Sensors without internal gain

Monolithic sensors with internal gain

This is a very powerful research path pursued by the **"Monolith" project.**

Monolith merges low noise from SiGe with high dVdt from multiplications.

It aims at reducing the Landau term by using very thin sensors, and high pixelation by buring the high-field avay form the surface junction

_	Collection electrode incorporating electronics	
		Top epitaxial layer - hole gain
		As gain layer B gain layer
		} Down epitaxial layer electron gain
		Substrate

Placement of gain layer deep inside sensor:

De-correlation from pixel implant size/geometry —> high pixel granularity possible (*spatial precision*) Only small fraction of charge gets amplified —> reduced Landau charge fluctuations (*timing precision*)

See R. Cardella "Monolith", VCI2022 Thursday afternoon

Setting the stage for FCC-ee

The first step is to define the phase space of the required performances (table from the ECFA Roadmap document)

	Vertex	Tracker
Position precision (um)	< 3	~ 6
material X/Xo	0.05	1
Power (mW/cm ²)	20	<100
Rates (GHz/cm ²)	0.05	
Timing precision (ns)	25	< 0.1

Summary:

- very good spatial and temporal resolutions
- very low material budget
- very low power consumption

First design innovation: low gain avalanche diode (LGAD)

- The low-gain mechanism, obtained with a moderately doped p-implant, is the defining feature of the design.
- The low gain allows segmenting and keeping the shot noise below the electronic noise, since the leakage current is low.

Low gain is the key ingredient to good temporal resolution

Summary of LGAD temporal resolution

There are now hundreds of measurements on 45-55 $\mu\text{m}\text{-thick}$ LGADs

→ Current sensor choice for the ATLAS and CMS timing layers

LGAD: State-of-the art

No gain area ~ 50 um

JTE + p-stop design

- CMS && ATLAS choice
- Not 100% fill factor
- Very well tested
- High Occupancy OK
- Rate ~ 50-100 MHz
- Rad hardness ~ 2-3E15 n/cm2

Trench-isolated design

- Almost 100% fill factor
- Temporal resolution (50 μ m) : 35-40 ps
- High Occupancy OK
- Rate ~ 50-100 MHz
- Rad hardness: to be studied

Second design innovation: resistive read-out (Tredi conf. 2015)

- The signal is formed on the n+ electrode ==> no signal on the AC pads
- The AC pads offer the smallest impedance to ground for the fast signal
- The signal discharges to ground

RSD principle of operation in motion

Example of signal sharing

Example: FBK production of resistive silicon sensors

To optimize the signal spread, the electrodes are cross-shaped

4 different dimensions: 200, 340, 450, and 1300 μm

200 x 340 μm²

FBK-INFH-UNIT

Pitch = 450 μm

Pitch = 1300 μm

(C)

RSD2

Pitch = 0.45 mmFRK-THEN-UNTI

RSD2 performance summary

Spatial resolution ~ 3% of the pixel pitch Temporal resolution ~35-40 ps (50 um thick)

Key message:

even very large pixels achieve excellent position and spatial resolutions ==> no need to use smal pixels, it saves a lot of power

RSD based tracker: low power, low material budget

The design of a tracker based on RSD is truly innovative:

- It delivers ~ 20 30 ps temporal resolution
- For the same spatial resolution, the number of pixels is reduced by 50-100
- The electronic circuitry can be easily accommodated
- The power consumption is much lower; it might even be air-cooled (~ 0.1-0.2 W/cm²)
- The sensors can be really thin, very low material budget

Conclusions

Very strong R&D in the field of 4D tracking

- In a 4D tracker, not all layers need to be 4D-capable
- Power will be the driving constraint,
 - it is "very difficult" to do excellent timing without a lot of power
- Vertex detectors (high occupancy, high radiation levels) require unique solutions.
- New developments (monolithic, SiGe, built-in gain, resistive read-out) might match the requirements of FCC 4D tracking needs

Where the R&D will happen: DRD3 (implementation of the ECFA roadmap) Town meeting: March 22-23rd.

Join DRD3 and participate!

Extra

RSD temporal resolution (FBK RSD2 production)

The resolution depends mostly upon the signal size and **weakly on the pixel size** RSDs at gain = 30 achieve a temporal jitter of about 20 ps

RSD position resolution (FBK RSD2 production)

RSDs at gain = 30 achieve a spatial resolution of about 2-3% of the pitch size:

- 1300 x 1300 mm²: σ_x ~ 40 μm
- 450 x 450 mm²: σ_x ~ 5 μm

Compared to a standard pixel

- 1300 x 1300 mm²: σ_x ~ 920 μm
- 450 x 450 mm²: σ_x ~ 320 μm

RSD2 crosses: spatial resolution for 4 different pitch sizes

Brief considerations about electronics: pre-amp design

Brief considerations about electronics: Time walk corrections

changes due to charge trapping

28

Radiation hardness of the gain implant

Irradiation decreases the active doping in the gain layer

Concluded R&D

Defect Engineering of the gain implant

 Carbon co-implantation mitigates the gain loss after irradiation

Modification of the gain implant profile

Narrower Boron doping profiles with high concentration
 peak are less prone to be inactivated

Future R&D

Compensation: gain implant obtain as difference of p- and n- doping

Concurrent acceptor and donor removal might limit the disappearance of effective doping

Carbon shield:

• A deep implant of carbon might prevent defects to reach the gain implant

See V. Sola "Silicon sensors for extreme fluences", VCI2022 Thursday afternoon

Reduced material budget

The active thickness of UFSD sensor is rather small \sim 50 um.

In the present prototypes, the active part is attached to a thick "handle wafer"

There is a clear path leading to < 100 μ m material:

Thinned handle wafer: 500 um → 10-20 um

ASIC

~50 µm

Thinned active area: 50 um → 25 um 50 ps → 25 ps

budget optimization