Detector integration in the interaction

F. Bedeschi (INFN-Pisa) on behalf of

M. Boscolo (LNF), F. Bosi (Pisa), F. Fransesini (LNF), S. Lauciani (LNF), F. Palla (Pisa), L. Pellegrino (LNF)

(*) Thanks to M. Dam (NBI, Copenhagen) for the part on Lumical

Requirements

- Interaction region detectors must be integrated with the beam pipe
 - The vertex detector innermost radius should profit of the reduced beam pipe diameter (2 cm) and should cover $|cos\theta| < 0.99$
 - Must not interefere with the Luminosity Calorimeter (clearance of ~120 mrad)
 - Support structure should house the luminometer
 - The mounting of the vertex and the outer tracker must be done inside the support tube
 - Minimize the radiation lengths

CDR LumiCal Design

Design considerations:

- Need to control geometry to a precision of O(1 μm)
 - Keep geometry as simple as at all possible

Multilayer barrels where all layes have identical circular geometry

- ◆ 25 layer SiW sandwich
 □ 3.5 mm W (1 X₀) + 1.0 mm gap for Si pads
- Physical dimensions
 Sensitive region: r = 54-115 mm
 - Region for "services": 115-145 mm
 - Calorimeter face at x = 1074 mm
- Proposed segmentation

32x32 pads/layer (1.9 x 10-22 mm² pads)
 25,600 channels per LumiCal

Weight

Mogens Dam / NBI Copenhagen

FCC-EIC Joint & MDI Workshop 2022

Acceptance and tolerances

- ◆ Effective Moliere radius of W-Si sandwich: ~15 mm
- Stay 1 Moliere radius away from both inner radius and somewhat more at outer radius
 - * To be optimised
- => Wide acceptance: 62 88 mrad
- Slightly smaller narrow acceptance: 64 86 mrad

Bhabha cross section: 14 nb

Compared to 30 nb multihadronic Z decays at peak

Geometrical tolerances for shift in acceptance of 10⁻⁴:
 Inner border: δΘ_{min} = ± 1.3 µrad ; δR_{min} = ± 1.5 µm
 Outer border: δΘ_{max} = ± 3.0 µrad ; δR_{max} = ± 3.3 µm
 Half distance between two calorimeters: δZ = ± 55 µm

Vertex and Outer Trackers

- Inside the same volume of the support tube that holds also the LumiCal
 - Vertex detector supported by the beam pipe
 - Outer Tracker (2 barrel layers and 6 disks) fixed to the support tube
- Minimal number of detector module variants
 - One module type only for the Vertex
 - One module type only for the Outer barrel and disks

Conceptual layout

Outer tracker:

Modules of 50 $\,\times\,150\,\mu m^2 \text{pixel}$ size

- Intermediate barrel at 15 cm radius (improved reconstruction for $p_T > 45$ MeV tracks)
- Outer barrel at 31.5 cm radius

• 3 disks per side

Vertex detector:

Modules of 25 \times 25 μ m²pixel size

3 barrel layers at12, 20 and 31 mm radius

Vertex detector modules

- Module concept inspired by <u>ARCADIA</u> INFN R&D
 - Pixel size $25x25 \ \mu m^2$
 - Active area 640 pixel (16 mm) in z and 256 pixels (6.4 mm) in $m r-\phi$
 - Chip periphery plus an inactive zone: total 2 mm in ${
 m r}-arphi$
 - Chips are side-abuttable in z
 - Assume total thickness of 50 μm
- Composed of 2 pixelated parts: total of 8.4 mm $(r \phi) \times 32$ mm (z)
 - Power budget not established yet: assume 50 mW/cm^2

Half-ladder layout – layer 1

Layer 1 ladders are placed at 12 mm radius

Half-ladder layout – layer 2

Layer 2 ladders are placed at 20 mm radius

Half ladder layout – layer 3

Overlapping in $r - \varphi$:2 parallel ladders separated by 500 µm - see engineering drawings later

Passive parts on the sides

Layer 3 ladders are placed between 30.5 and 31.05 mm radius

Layer 1 14 overlapping staves of 6 modules each Pinwheel geometry: all modules at the same (smallest) radius Power budget ~11 W

DISCLAIMER: Mechanical supports very preliminary, mainly for MDI integration at this stage (for all <u>layers)</u>

Mechanical supports are being optimised for material budget

Power and signal distribution yet to be fully engineered

Layer 1 stave detail

Reticular lightweight support to provide stiffness

- Thin carbon fiber walls interleaved with Rohacell
- 2 buses (data and power) 1.8 mm wide each per side.

Sensors facing interaction point w/o any other material in front

Readout chips either sides

Air cooled

Vertex layer supports

• Conical carbon fibre shaped structure, held by the beam pipe

Carbon fibre support details

Being engineered. It will also bring air ducts for refrigeration

Air cooling for Belle-II upgrade

WP10.2 Integrated micro-channels

Thin multi-CMOS-chip Silicon structures for Belle 2 upgrade Thermo-mechanical demonstrator submitted to IZM by Valencia and Bonn, thermal simulations in IJCLab Paris

Overall Vertex layout

Total power ~120 W – Air cooled

Outer layers modules

- Based on ATLASPIX3 R&D
 - $50 \times 150 \ \mu m^2$
 - Up to 1.28 Gb/s downlink
 - TSI 180 nm process
 - 132 columns of 372 pixels
 - Active (total) length (r-phi x z)
 - 18.6 (21) mm x 19.8 (20.2) mm
 - Module is made of 2x2 chips total length:
 - size 42.2 mm x 40.6 mm
 - Power budget not established yet: assume 100 mW/cm²

Intermediate Tracker Barrel At 15 cm radius

24 staves of 8 modules each.

Lightweight reticular support structure (ALICE/Belle-II like)

Readout chips either side **Power budget** ~370 W

Water cooled (2 pipes of 2 mm diameter)

Stave detail

• Similar structure of Belle-II oVTX L5

Outer Tracker Barrel

Readout chips either side **Power budget** ~1370 W

Water cooled (2 pipes of 2 mm diameter)

Overall layout

Support cylinder

- All elements in the interaction region (vertex, Tracker and LumiCal) are mounted rigidly on a support cylinder that guarantees mechanical stability and alignment
 - Once the structure is assembled it is slided inside the rest of the detector

Conclusions

- A <u>preliminary</u> layout of the interaction region with LumiCal, vertex and outer tracker of the IDEA detector is being engineered
 - Feasibility studies of vertex and track integration successfully made
 - LumiCal conceptual integration done
- Next steps:
 - Vertex detector
 - Optimise the support mechanics
 - Evaluate material budget
 - Study the routing of the services (readout and power cables)
 - Dimensioning the air cooling system
 - Outer Tracker
 - Study the routing of the services (readout and power cables, cooling manifolds)
 - Lumical
 - Engineering and assembly
 - Simulation
 - DELPHES geometry updated, material still to be revised
 - Geant4 geometry update on-going (see Armin Ilg talk on Wednesday) Joint Detector/Software session

Backup

Inner tracker

Medium Tracker

Stave outer tracker

Outer tracker

Disk 2

F. Bedeschi – FCC Physics \

Disk 3

F. Bedeschi – FCC P

Disk 3

